Have a personal or library account? Click to login

Coreference Resolution for Anaphoric Pronouns in Texts on Medical Products

Open Access
|Mar 2019

References

  1. Clark, K., & Manning, C. D. (2015). Entity-Centric Coreference Resolution with Model Stacking. In Proceedings of the 53th Annual Meeting of the Association for Computational Linguistic and the 7th International Joint Conference on Natural Language Processing (pp. 1405–1415). Association for Computational Linguistics, Beijing, China.10.3115/v1/P15-1136
  2. Clark, K., & Manning, C. D. (2016). Deep reinforcement learning for mention-ranking coreference models. In Proceedings of the 2016 Conference on Empirical Methods on Natural Language Processing (pp. 2256–2262). Association for Computational Linguistics, Austin, Texas.10.18653/v1/D16-1245
  3. Ge, N., Hale, J., & Charniak, E. (1998). A Statistical Approach to Anaphora Resolution. In Proceedings of the Sixth Workshop on Very Large Corpora (pp. 167–170). Association for Computational Linguistics, Montreal, Canada.
  4. Le Cessie, S., & Van Houwelingen, J. C. (1992). Ridge estimators in logistic regression. Applied Statistics, 41(1), 191–201. doi: 10.2307/234762810.2307/2347628
  5. Lee, H., Chang, A., Peirsman, Y., Chambers, N., Surdeanu, M., & Jurafsky, D. (2013). Deterministic coreference resolution based on entity-centric, precision-ranked rules. Computational Linguistics, 39(4), 885–916.10.1162/COLI_a_00152
  6. Lee, H., Peirsman, Y., Chang, A., Chambers, N., Surdeanu, M., & Jurafsky, D. (2011). Stanford’s Multi-Pass Sieve Coreference Resolution System at the CoNLL-2011 Shared Task. In Proceedings of the 15th Conference on Computational Natural Language Learning: Shared Task (pp. 28–34). Association for Computational Linguistics, Portland, Oregon, USA.
  7. Levy, R., & Andrew, G. (2006). Tregex and Tsurgeon: tools for querying and manipulating tree data structures. In Proceedings of the Fifth International Conference on Language Resources and Evaluation (pp. 2231–2234). European Language Resources Association, Genoa, Italy.
  8. Miller, G., & Fellbaum, C. (1998). WordNet: An Electronic Lexical Database. Cambridge: MIT Press.10.7551/mitpress/7287.001.0001
  9. Quinlan, J. R. (2014). C4.5: Programs for Machine Learning. Elsevier.
  10. Santorini, B. (1990). Part-of-Speech Tagging Guidelines for the Penn Treebank Project (3rd revision) (Technical Report No. MS-CIS-90-47). University of Pennsylvania.
  11. Soon, W. M., Ng, H. T., & Lim, D. C. Y. (2001). A Machine Learning Approach to Coreference Resolution of Noun Phrases. Computational Linguistics, 27(4), 521–544.10.1162/089120101753342653
  12. Witten, I. H., Frank, E., Hall, M. A., & Pal, C. J. (2016). Data Mining: Practical Machine Learning Tools and Techniques. Morgan Kaufmann.
DOI: https://doi.org/10.2478/slgr-2018-0050 | Journal eISSN: 2199-6059 | Journal ISSN: 0860-150X
Language: English
Page range: 205 - 216
Published on: Mar 16, 2019
Published by: University of Białystok, Department of Pedagogy and Psychology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year
Related subjects:

© 2019 Jerzy Krawczuk, Mariusz Ferenc, published by University of Białystok, Department of Pedagogy and Psychology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.