Have a personal or library account? Click to login
MRI Texture-Based Recognition of Dystrophy Phase in Golden Retriever Muscular Dystrophy Dogs. Elimination of Features that Evolve along with the Individual’s Growth
Albregtsen, F., Nielsen, B., & Danielsen, H. E. (2000). Adaptive gray level run length features from class distance matrices. In A. Sanfeliu, J. J. Villanueva, M. Vanrell, R. Alqukzar, J. Crowley, & Y. Shirai (Eds.), Proceedings 15th International Conference on Pattern Recognition. ICPR-2000. Vol. 3. Image, Speech, and Signal Processing (pp. 738–741). doi: 10.1109/ICPR.2000.90365010.1109/ICPR.2000.903650
Birnkrant, D. J., Bushby, K., Bann, C. M., Alman, B. A., Apkon, S. D., Blackwell, A., Case, L. E., et al. (2018a). Diagnosis and management of Duchenne muscular dystrophy, part 2: respiratory, cardiac, bone health, and orthopaedic management. Lancet Neurology, 17(4), 347–361. doi: 10.1016/S1474-4422(18)30025-510.1016/S1474-4422(18)30025-5
Birnkrant, D. J., Bushby, K., Bann, C. M., Apkon, S. D., Blackwell, A., Brumbaugh, D., Case, L. E., et al. (2018b). Diagnosis and management of Duchenne muscular dystrophy, part 1: diagnosis, and neuromuscular, rehabilitation, endocrine, and gastrointestinal and nutritional management. Lancet Neurology, 17(3), 251–267. doi: 10.1016/S1474-4422(18)30024-310.1016/S1474-4422(18)30024-3
Chu, A., Sehgal, C. M., & Greenleaf, J. F. (1990). Use of gray value distribution of run lengths for texture analysis. Pattern Recognition Letters, 11(6), 415–419. doi: 10.1016/0167–8655(90)90112-F10.1016/01678655(90)90112-
de Certaines, J. D., Larcher, T., Duda, D., Azzabou, N., Eliat, P.-A., Escudero, L. M., Pinheiro, A. M. G., et al. (2015). Application of texture analysis to muscle MRI: 1-What kind of information should be expected from texture analysis? EPJ Nonlinear Biomedical Physics, 3:3. doi: 10.1140/epjnbp/s40366-015-0017-110.1140/epjnbp/s40366-015-0017-1
Dramiński, M., Rada-Iglesias, A., Enroth, S., Wadelius, C., Koronacki, J., & Komorowski, J. (2008). Monte Carlo feature selection for supervised classification. Bioinformatics, 24(1), 110–117. doi: 10.1093/bioinformatics/btm48610.1093/bioinformatics/btm486
Duda, D. (2009). Classification d’images médicales basée sur l’analyse de texture (Unpublished doctoral dissertation). University of Rennes 1, Rennes, France.
Duda, D., Kretowski, M., Azzabou, N., & de Certaines, J. D. (2015). MRI texture analysis for differentiation between healthy and Golden Retriever Muscular Dystrophy dogs at different phases of disease evolution. In K. Saeed & W. Homenda (Eds.), Computer Information Systems and Industrial Management. CISIM 2015 (pp. 255–266). Lecture Notes in Computer Science: Vol. 9339. Springer, Cham. doi: 10.1007/978-3-319-24369-6_2110.1007/978-3-319-24369-6_21
Duda, D., Kretowski, M., Azzabou, N., & de Certaines, J. D. (2016). MRI texture-based classification of dystrophic muscles. A search for the most discriminative tissue descriptors. In K. Saeed & W. Homenda (Eds.), Computer Information Systems and Industrial Management. CISIM 2016 (pp. 116–128). Lecture Notes in Computer Science: Vol. 9842. Springer, Cham. doi: 10.1007/978-3-319-45378-1_1110.1007/978-3-319-45378-1_11
Fan, Z., Wang, J., Ahn, M., Shiloh-Malawsky, Y., Chahin, N., Elmore, S., Bag-nell, C. R., et al. (2014). Characteristics of magnetic resonance imaging biomarkers in a natural history study of golden retriever muscular dystrophy. Neuromuscular Disorders, 24(2), 178–191. doi: 10.1016/j.nmd.2013.10.00510.1016/j.nmd.2013.10.005
Finanger, E. L., Russman, B., Forbes, S. C., Rooney, W. D., Walter, G. A., & Vandenborne, K. (2012). Use of skeletal muscle MRI in diagnosis and monitoring disease progression in Duchenne Muscular Dystrophy. Physical Medicine and Rehabilitation Clinics of North America, 23(1), 1–10. doi: 10.1016/j.pmr.2011.11.00410.1016/j.pmr.2011.11.004
Freund, Y., & Schapire, R. E. (1997). A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Science, 55(1), 119–139. doi: 10.1006/jcss.1997.150410.1006/jcss.1997.1504
Guiraud, S., Aartsma-Rus, A., Vieira, N. M., Davies, K. E., van Ommen, G.-J. B., & Kunkel, L. M. (2015). The pathogenesis and therapy of muscular dystrophies. Annual Review of Genomics and Human Genetics, 16, 281–308. doi: 10.1146/annurev-genom-090314-02500310.1146/annurev-genom-090314-025003
Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., & Witten, I. H. (2009). The WEKA data mining software: an update. ACM SIGKDD Explorations Newsletter, 11(1), 10–18. doi: 10.1145/1656274.165627810.1145/1656274.1656278
Haralick, R. M., Shanmugam, K., & Dinstein, I. (1973). Textural Features for Image Classification. IEEE Transactions on Systems, Man, and Cybernetics, SMC-3(6), 610–621. doi: 10.1109/TSMC.1973.430931410.1109/TSMC.1973.4309314
Lerski, R. A., de Certaines, J. D., Duda, D., Klonowski, W., Yang, G., Coatrieux, J. L., Azzabou, N., & Eliat, P. A. (2015). Application of texture analysis to muscle MRI: 2 – technical recommendations. EPJ Nonlinear Biomedical Physics, 3:2. doi: 10.1140/epjnbp/s40366-015-0018-010.1140/epjnbp/s40366-015-0018-0
Lerski, R. A., Straughan, K., Shad, L., Boyce, D., Bluml, S., & Zuna, I. (1993). MR image texture analysis – an approach to tissue characterization. Magnetic Resonance Imaging, 11(6), 873–887. doi: 10.1016/0730-725X(93)90205-R10.1016/0730-725X(93)90205-
LoMauro, A., d’Angelo, M. G., & Aliverti, A. (2015). Assessment and management of respiratory function in patients with Duchenne muscular dystrophy: current and emerging options. Therapeutic and Clinical Risk Management, 11, 1475–1488. doi: 10.2147/TCRM.S5588910.2147/TCRM.S55889
Martins-Bach, A. B., Malheiros, J., Matot, B., Martins, P. C. M., Almeida, C. F., Caldeira, W., Ribeiro, A. F., et al. (2015). Quantitative T2 combined with texture analysis of nuclear Magnetic Resonance Images identify different degrees of muscle involvement in three mouse models of muscle dystrophy: mdx, Large(myd) and mdx/Large(myd). PLOS ONE, 10(2): e0117835. doi: 10.1371/journal.pone.011783510.1371/journal.pone.0117835
National Research Council (2011). Guide for the Care and Use of Laboratory Animals. Washington, DC: The National Academies Press. doi: 10.17226/1291010.17226/12910
Platt, J. C. (1998). Fast Training of Support Vector Machines using Sequential Minimal Optimization. In B. Scholkopf, C. J. C. Burges, & A. J. Smola (Eds.), Advances in Kernel Methods – Support Vector Learning (pp. 185–208). Cambridge, MA, USA: MIT Press.10.7551/mitpress/1130.003.0016
Salmaninejad, A., Valilou, S. F., Bayat, H., Ebadi, N., Daraei, A., Yousefi, M., Nesaei, A., & Mojarrad, M. (2018). Duchenne muscular dystrophy: an updated review of common available therapies. International Journal of Neuroscience, 128(9), 854–864. doi: 10.1080/00207454.2018.143069410.1080/00207454.2018.1430694
Spurney, C. F. (2011). Cardiomyopathy of Duchenne muscular dystrophy: current understanding and future directions. Muscle & Nerve, 44(1), 8–19. doi: 10.1002/mus.2209710.1002/mus.22097
Thibaud, J. L., Azzabou, N., Barthelemy, I., Fleury, S., Cabrol, L., Blot, S., & Carlier, P. G. (2012). Comprehensive longitudinal characterization of canine muscular dystrophy by serial NMR imaging of GRMD dogs. Neuromuscular Disorders, 22 (Suppl. 2), S85–S99. doi: 10.1016/j.nmd.2012.05.01010.1016/j.nmd.2012.05.010
Wang, J., Fan, Z., Vandenborne, K., Walter, G., Shiloh-Malawsky, Y., An, H., Kornegay, J. N., & Styner, M. A. (2013). A computerized MRI biomarker quantification scheme for a canine model of Duchenne muscular dystrophy. International Journal. of Computer Assisted Radiology and Surgery, 8(5), 763–774. doi: 10.1007/s11548–012–0810–610.1007/s1154801208106
Weszka, J. S., Dyer, C. R., & Rosenfeld, A. (1976). A comparative study of texture measures for terrain classification. IEEE Transactions on Systems, Man, and Cybernetics, SMC-6(4), 269–285. doi: 10.1109/TSMC.1976.540877710.1109/TSMC.1976.5408777
Yang, G., Lalande, V., Chen, L., Azzabou, N., Larcher, T., de Certaines, J. D., Shu, H., & Coatrieux, J. L. (2015). MRI texture analysis of GRMD dogs using orthogonal moments: A preliminary study. IRBM, 36(4), 213–219. doi: 10.1016/j.irbm.2015.06.00410.1016/j.irbm.2015.06.004