Have a personal or library account? Click to login

Application of Normalized Compression Distance and Lempel-Ziv Jaccard Distance in Micro-electrode Signal Stream Classification for the Surgical Treatment of Parkinson’s Disease

Open Access
|Mar 2019

References

  1. Bifet, A., Pfahringer, B., Read, J., & Holmes, G. (2013). Efficient Data Stream Classification via Probabilistic Adaptive Windows. In Proceedings of the 28th Annual ACM Symposium on Applied Computing (pp. 801–806). New York, NY, USA: ACM. doi: 10.1145/2480362.248051610.1145/2480362.2480516
  2. Bifet, A., Gavaldà, R., Holmes, G., & Pfahringer, B. (2018). Machine Learning for Data Streams with Practical Examples in MOA. MIT Press.10.7551/mitpress/10654.001.0001
  3. Ciecierski, K. A. (2013). Decision Support System for surgical treatment of Parkinson’s disease (PhD thesis). Warsaw University of Technology.
  4. Cilibrasi, R., & Vitanyi, P. M. B. (2005). Clustering by compression. IEEE Transactions on Information Theory, 51(4), 1523–1545. doi: 10.1109/TIT.2005.84405910.1109/TIT.2005.844059
  5. Cilibrasi, R. (2007). Statistical Inference Through Data Compression (PhD thesis). Institute for Logic, Language and Computation, University of Amsterdam.
  6. Cohen, A. R., & Vitanyi, P. M. B. (2015). Normalized Compression Distance of Multisets with Applications. IEEE Transactions on Pattern Analysis and Machine Intelligence, 37(8), 1602–1614. doi: 10.1109/TPAMI.2014.237517510.1109/TPAMI.2014.2375175
  7. Hebb, A. O., Zhang, J. J., Mahoor, M. H., Tsiokos, C., Matlack, C., Chizeck, H. J., & Pouratian, N. (2014). Creating the Feedback Loop. Neurosurgery Clinics of North America, 25(1), 187–204. doi: 10.1016/j.nec.2013.08.00610.1016/j.nec.2013.08.006
  8. Hell, F., Köglsperger, T., Mehrkens, J., & Boetzel, K. (2018). Improving the Standard for Deep Brain Stimulation Therapy: Target Structures and Feedback Signals for Adaptive Stimulation. Current Perspectives and Future Directions. Cureus, 10(4). doi: 10.7759/cureus.246810.7759/cureus.2468
  9. Kuhner, A., Schubert, T., Cenciarini, M., Wiesmeier, I. K., Coenen, V. A., Burgard, W., Weiller, C., et al. (2017). Correlations between Motor Symptoms across Different Motor Tasks, Quantified via Random Forest Feature Classification in Parkinson’s Disease. Frontiers in Neurology, 8:607. doi: 10.3389/fneur.2017.0060710.3389/fneur.2017.00607
  10. Losing, V., Hammer, B., & Wersing, H. (2018). Tackling heterogeneous concept drift with the Self-Adjusting Memory (SAM). Knowledge and Information Systems, 54(1), 171–201. doi: 10.1007/s10115-017-1137-y10.1007/s10115-017-1137-y
  11. Mamun, K. A., Mace, M., Lutman, M. E., Stein, J., Liu, X., Aziz, T., Vaidyana-than, R., et al. (2015). Movement decoding using neural synchronization and inter-hemispheric connectivity from deep brain local field potentials. Journal of Neural Engineering, 12(5), 056011. doi: 10.1088/1741-2560/12/5/05601110.1088/1741-2560/12/5/056011
  12. Mohammed, A., Bayford, R., & Demosthenous, A. (2018). Toward adaptive deep brain stimulation in Parkinson’s disease: a review. Neurodegenerative Disease Management, 8(2), 115–136. doi: 10.2217/nmt-2017-005010.2217/nmt-2017-0050
  13. O’Halloran, R., Kopell, B. H., Sprooten, E., Goodman, W. K., & Frangou, S. (2016). Multimodal Neuroimaging-Informed Clinical Applications in Neuropsychiatric Disorders. Frontiers in Psychiatry, 7:63. doi: 10.3389/fpsyt.2016.0006310.3389/fpsyt.2016.00063
  14. Poewe, W., Seppi, K., Tanner, C. M., Halliday, G. M., Brundin, P., Volkmann, J., Schrag, A. L., et al. (2017). Parkinson disease. Nature Reviews Disease Primers, 3:17013. doi: 10.1038/nrdp.2017.1310.1038/nrdp.2017.13
  15. Raff, E., & Nicholas, C. (2017). An Alternative to NCD for Large Sequences, Lempel-Ziv Jaccard Distance. In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 1007–1015). ACM Press. doi: 10.1145/3097983.309811110.1145/3097983.3098111
  16. Rajpurohit, V., Danish, S. F., Hargreaves, E. L., & Wong, S. (2015). Optimizing computational feature sets for subthalamic nucleus localization in DBS surgery with feature selection. Clinical Neurophysiology, 126(5), 975–982. doi: 10.1016/j.clinph.2014.05.03910.1016/j.clinph.2014.05.039
  17. Santaniello, S., Gale, J. T., & Sarma, S. V. (2018). Systems approaches to optimizing deep brain stimulation therapies in Parkinson’s disease. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 10(5), e1421. doi: 10.1002/wsbm.142110.1002/wsbm.1421
  18. Shamir, R. R., Dolber, T., Noecker, A. M., Walter, B. L., & McIntyre, C. C. (2015). Machine Learning Approach to Optimizing Combined Stimulation and Medication Therapies for Parkinson’s Disease. Brain Stimulation, 8(6), 1025–1032. doi: 10.1016/j.brs.2015.06.00310.1016/j.brs.2015.06.003
  19. Shamir, R. R., Duchin, Y., Kim, J., Patriat, R., Marmor, O., Bergman, H., Vitek, J. L., et al. (2018). Microelectrode Recordings Validate the Clinical Visualization of Subthalamic-Nucleus Based on 7T Magnetic Resonance Imaging and Machine Learning for Deep Brain Stimulation Surgery. Neuro-surgery. doi: 10.1093/neuros/nyy21210.1093/neuros/nyy212
  20. Su, F., Wang, J., Niu, S., Li, H., Deng, B., Liu, C., & Wei, X. (2018). Nonlinear predictive control for adaptive adjustments of deep brain stimulation parameters in basal ganglia-thalamic network. Neural Networks, 98, 283–295. doi: 10.1016/j.neunet.2017.12.00110.1016/j.neunet.2017.12.001
  21. Taghva, A. (2011). Hidden Semi-Markov Models in the Computerized Decoding of Microelectrode Recording Data for Deep Brain Stimulator Placement. World Neurosurgery, 75(5–6), 758–763.e4. doi: 10.1016/j.wneu.2010.11.00810.1016/j.wneu.2010.11.008
  22. Teplitzky, B. A., Zitella, L. M., Xiao, Y., & Johnson, M. D. (2016). Model-Based Comparison of Deep Brain Stimulation Array Functionality with Varying Number of Radial Electrodes and Machine Learning Feature Sets. Frontiers in Computational Neuroscience, 10:58. doi: 10.3389/fncom.2016.0005810.3389/fncom.2016.00058
  23. Trevathan, J. K., Yousefi, A., Park, H. O., Bartoletta, J. J., Ludwig, K. A., Lee, K. H., & Lujan, J. L. (2017). Computational Modeling of Neurotransmitter Release Evoked by Electrical Stimulation: Nonlinear Approaches to Predicting Stimulation-Evoked Dopamine Release. ACS Chemical Neuro-science, 8(2), 394–410. doi: 10.1021/acschemneuro.6b0031910.1021/acschemneuro.6b00319
  24. Valsky, D., Marmor-Levin, O., Deffains, M., Eitan, R., Blackwell, K., Bergman, H., & Israel, Z. (2017). Stop! Border Ahead: Automatic detection of subthalamic exit during deep brain stimulation surgery. Movement Disorders, 32(1), 70–79. doi: 10.1002/mds.2680610.1002/mds.26806
  25. Wong, S., Baltuch, G. H., Jaggi, J. L., & Danish, S. F. (2009). Functional localization and visualization of the subthalamic nucleus from microelectrode recordings acquired during DBS surgery with unsupervised machine learning. Journal of Neural Engineering, 6(2), 026006. doi: 10.1088/1741-2560/6/2/02600610.1088/1741-2560/6/2/026006
DOI: https://doi.org/10.2478/slgr-2018-0040 | Journal eISSN: 2199-6059 | Journal ISSN: 0860-150X
Language: English
Page range: 45 - 57
Published on: Mar 16, 2019
Published by: University of Białystok
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year
Related subjects:

© 2019 Kamil Ząbkiewicz, published by University of Białystok
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.