
The use of conventional logical connectives either in logic, in mathematics, or in both cannot determine the meanings of those connectives. This is because every model of full conventional set theory can be extended conservatively to a model of intuitionistic set plus class theory, a model in which the meanings of the connectives are decidedly intuitionistic and nonconventional. The reasoning for this conclusion is acceptable to both intuitionistic and classical mathematicians. En route, I take a detour to prove that, given strictly intuitionistic principles, classical negation cannot exist.
© 2018 Charles McCarty, published by University of Bialystok
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.