Have a personal or library account? Click to login
The Use of Data Mining Methods to Predict the Result of Infertility Treatment Using the IVF ET Method Cover

The Use of Data Mining Methods to Predict the Result of Infertility Treatment Using the IVF ET Method

Open Access
|Dec 2014

References

  1. Boser, B. E., Guyon, I. M., & Vapnik, V. N. (1992). A training algorithm for optimal margin classifiers. In D. Haussler (Ed.), 5th Annual ACM Workshop on Computational Learning Theory (pp. 144-152). Pittsburgh, PA, USA: ACM Press.
  2. Breiman, L. (2001). Random Forests. Machine Learning, 45(1), 5-32.10.1023/A:1010933404324
  3. Kohonen, T. (1982). Self-Organized Formation of Topologically Correct Feature Maps. Biological Cybernetics, 43, 59-69.10.1007/BF00337288
  4. Kohonen, T. (1988). Self-organization and associative memory (2nd ed.). NY, USA: Springer-Verlag.10.1007/978-3-662-00784-6
  5. Li, S., Harner, E. J., & Adjeroh, D. A. (2011). Random KNN feature selection - a fast and stable alternative to Random Forests. BMC Bioinformatics. 12, 450. DOI:10.1186/1471-2105-12-450.10.1186/1471-2105-12-450
  6. Malinowski, P., Milewski, R., Ziniewicz, P., Milewska, A. J., Czerniecki, J., & Wołczyński, S. (2013). Classification issue in the IVF ICSI/ET data anal- ysis: early treatment outcome prognosis. Studies in Logic, Grammar and Rhetoric. Logical, Statistical and Computer Methods in Medicine, 33(45), 103-115.10.2478/slgr-2013-0034
  7. Milewska, A. J., Jankowska, D., Cwalina, U., Więsak, T., Citko, D., Morgan, A., & Milewski, R. (2013). Analyzing Outcomes of Intrauterine Insemination Treatment by Application of Cluster Analysis or Kohonen Neural Networks. Studies in Logic, Grammar and Rhetoric. Logical, Statistical and Computer Methods in Medicine, 35(48), 7-25.10.2478/slgr-2013-0041
  8. Milewski, R., Jamiołkowski, J., Milewska, A. J., Domitrz, J., Szamatowicz, J., & Wołczyński, S. (2009a). Prognozowanie skuteczności procedury IVF ICSI/ET - wśrod pacjentek Kliniki Rozrodczości i Endokrynologii Gineko- logicznej - z wykorzystaniem sieci neuronowych. Ginekologia Polska, 80(12), 900-906.
  9. Milewski, R., Jamiołkowski, J., Milewska, A. J., Domitrz, J., & Wołczyński, S. (2009b). The system of electronic registration of information about patients treated for infertility with the IVF ICSI/ET method. Studies in Logic, Gram- mar and Rhetoric, 17(30), 225-239.
  10. Milewski, R., Malinowski, P., Milewska, A. J., Czerniecki, J., Ziniewicz, P., & Wołczyński, S. (2011). Nearest neighbor concept in the study of IVF ICSI/ET treatment effectiveness. Studies in Logic, Grammar and Rhetoric. Logical, Statistical and Computer Methods in Medicine, 25(38), 49-57.
  11. Milewski, R., Malinowski, P., Milewska, A. J., Ziniewicz, P., Czerniecki, J., Pierzyński, P., & Wołczyński, S. (2012). Classification issue in the IVF ICSI/ET data analysis. Studies in Logic, Grammar and Rhetoric. Logical, Statistical and Computer Methods in Medicine, 29(42), 75-85.
  12. Milewski, R., Malinowski, P., Milewska, A. J., Ziniewicz, P., & Wołczyński, S. (2010). The usage of margin-based feature selection algorithm in IVF ICSI/ET data analysis. Studies in Logic, Grammar and Rhetoric. Logical, Statistical and Computer Methods in Medicine, 21(34), 35-46.
  13. Milewski, R., Milewska, A. J., Czerniecki, J., Leśniewska, M., & Wołczyński, S. (2013). Analysis of the demographic profile of patients treated for infertil- ity using assisted reproductive techniques in 2005-2010. Ginekologia Polska. 84(7), 609-614.10.17772/gp/1612
  14. Rumelhart, D. E., Hinton, G. E., &Williams, R. J. (1986). Learning representations by back-propagating errors. Nature, 323(6088), 533-536.
  15. Siristatidis, Ch., Pouliakis, A., Chrelias, Ch., & Kassanos, D. (2011). Artificial In- telligence in IVF: A Need. Systems Biology in Reproductive Medicine, 57(4), 179-185.10.3109/19396368.2011.558607
  16. Stekhoven, D. J., & B¨uhlmann, P. (2012). MissForest - non-parametric missing value imputation for mixed-type data. Bioinformatics, 28(1), 112-118.10.1093/bioinformatics/btr597
  17. Templ, M., Alfons, A., Kowarik, A., & Prantner, B. (2013). VIM: Visualization and Imputation of Missing Values. R package version 3.0.3.1. Retrieved from http://cran.r-project.org/package=VIM.
  18. Uyar, A., Bener, A., Ciray, H. N., & Bahceci,M. (2009). A frequency based encoding technique for transformation of categorical variables in mixed IVF dataset. 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (pp. 6214-6217). Minneapolis, USA.10.1109/IEMBS.2009.5334548
DOI: https://doi.org/10.2478/slgr-2014-0044 | Journal eISSN: 2199-6059 | Journal ISSN: 0860-150X
Language: English
Page range: 67 - 74
Published on: Dec 30, 2014
Published by: University of Białystok
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year
Related subjects:

© 2014 Paweł Malinowski, Robert Milewski, Piotr Ziniewicz, Anna Justyna Milewska, Jan Czerniecki, Sławomir Wołczyński, published by University of Białystok
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.