Have a personal or library account? Click to login

Clustering Algorithms in Hybrid Recommender System on MovieLens Data

Open Access
|Aug 2014

References

  1. Agarwal, N., Haque, E., Liu, H., & Parsons, L. (2005). Research paper recommender systems: A subspace clustering approach. In Advances in Web-Age Information Management (pp. 475–491). Springer.10.1007/11563952_42
  2. Anand, S. S., & Mobasher, B. (2003). Intelligent techniques for web personalization. In Proceedings of the 2003 International Conference on Intelligent Techniques for Web Personalization (pp. 1–36). Springer-Verlag.
  3. Bridge, D., & Kelleher, J. (2002). Experiments in sparsity reduction: Using clustering in collaborative recommenders. In Artificial Intelligence and Cognitive Science (pp. 144–149). Springer.10.1007/3-540-45750-X_18
  4. Cremonesi, P., Donatacci, A., Garzotto, F., & Turrin, R. (2012). Decision-Making in Recommender Systems: The Role of User's Goals and Bounded Resources. In 6th ACM Conference on Recommender Systems (pp. 1–7).
  5. Gavalas, K. M. D. (2011). A web-based pervasive recommendation system for mobile tourist guides. In Personal and Ubiquitous Computing (Vol. 15, pp. 759–770). Springer-Verlag.10.1007/s00779-011-0389-x
  6. Haruechaiyasak, C., Tipnoe, C., Kongyoung, S., Damrongrat, C., & Angkawattanawit, N. (2005). A dynamic framework for maintaining customer profiles in e-commerce recommender systems. In IEEE International Conference on e-Technology, e-Commerce and e-Service, (pp. 768–771).10.1109/EEE.2005.8
  7. Jain, A. K., Murty, M. N., & Flynn, P. J. (1999) Data clustering: a review. ACM Computing Surveys, 31(3), 264–323.10.1145/331499.331504
  8. Jannach, D., Zanker, M., Felfernig, A., & Friedrich, G. (2010). Recommender systems: an introduction, Cambridge University Press.10.1017/CBO9780511763113
  9. Kantor, P. B., Ricci, F., Rokach, L., & Shapira, B. (2011). Recommender systems handbook. Springer.
  10. Kim, Y. S., T.H. (2005). An Effective Recommendation Algorithm for Clustering-Based Recommender Systems. In Lecture Notes in Artificial Intelligence (Vol. 3809, p. 1150–1153). Springer-Verlag.10.1007/11589990_159
  11. Kużelewska, U. (2013). Advantages of Information Granulation in Clustering Algorithms. In Agents and Artificial Intelligence (pp. 131–145). Springer.10.1007/978-3-642-29966-7_9
  12. Li, L., Wang, D.-D., Zhu, S.-Z., & Li, T. (2011). Personalized news recommendation: a review and an experimental investigation. Journal of Computer Science and Technology, 26(5), 754–766.10.1007/s11390-011-0175-2
  13. Mahmood, T., & Ricci, F. (2009). Improving recommender systems with adaptive conversational strategies. In Proceedings of the 20th ACM Conference on Hypertext and Hypermedia (pp. 73–82).10.1145/1557914.1557930
  14. Malak, A.-H., Yan, L. H., & Jie, L. (2011). Personalized e-Government Services: Tourism Recommender System Framework. In Lecture Notes in Business Information Processing, (Vol. 75, p. 173–187). Springer.
  15. Moghaddam, S. G., & Selamat, A. (2011). A scalable collaborative recommender algorithm based on user density-based clustering. In 3rd International Conference on Data Mining and Intelligent Information Technology Applications (ICMiA) (pp. 246–249).
  16. MovieLens 100k Data Set. (n.d). Retrieved 01.02.2013, from http://www.grouplens.org/node/73.
  17. Pitsilis, G. e. a. (2011). Clustering Recommenders in Collaborative Filtering Using Explicit Trust Information. In Trust Management V (Vol. 358, p. 82–97). Springer.10.1007/978-3-642-22200-9_9
  18. Rongfei, J., Maozhong, J., & Chao, L. (2010). A new clustering method for collaborative filtering. In International Conference on Networking and Information Technology (pp. 488–492).10.1109/ICNIT.2010.5508465
  19. Sarwar, B., Karypis, G., Konstan, J., & Riedl, J. (2001). Item-based collaborative filtering recommendation algorithms. In Proceedings of the 10th International Conference on World Wide Web (pp. 285–295).10.1145/371920.372071
  20. Sarwar, B., Karypis, G., Konstan, J., & Riedl, J. (2002). Recommender systems for large-scale e-commerce: Scalable neighborhood formation using clustering. In Proceedings of the 5th International Conference on Computer and Information Technology (Vol. 1).
  21. Schiaffino, A. A., S. (2009). Building an expert travel agent as a software agent. In Expert Systems with Applications (Vol. 36, pp. 1291–1299). Elsevier.10.1016/j.eswa.2007.11.032
DOI: https://doi.org/10.2478/slgr-2014-0021 | Journal eISSN: 2199-6059 | Journal ISSN: 0860-150X
Language: English
Page range: 125 - 139
Published on: Aug 8, 2014
Published by: University of Białystok
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year
Related subjects:

© 2014 Urszula Kuzelewska, published by University of Białystok
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.