Have a personal or library account? Click to login

Computer-Aided Diagnosis of Liver Tumors Based on Multi-Image Texture Analysis of Contrast-Enhanced CT. Selection of the Most Appropriate Texture Features

Open Access
|Dec 2013

References

  1. Bilello, M., Gokturk, S. B., Desser, T., Napel, S., Jeffrey, R. B., & Beaulieu, C. F. (2004). Automatic detection and classification of hypodense hepatic lesions on contrast-enhanced venous-phase CT. Med. Phys., 31(9), 2584-2593. DOI: 10.1118/1.1782674.10.1118/1.1782674
  2. Bruno, A., Collorec, R., Bezy-Wendling, J., Reuze, P., & Rolland, Y. (1997). Texture analysis in medical imaging. In C. Roux & J.-L. Coatrieux (Eds.), Contemporary perspectives in three-dimensional biomedical imaging (pp. 133-164). Amsterdam, Netherlands: IOS Press. DOI: 10.3233/978-1-60750-874-8-133.
  3. Chen, C.-C., DaPonte, J., & Fox, M. (1989). Fractal feature analysis and classification in medical imaging. IEEE Trans. Med. Imag., 8(2), 133-142. DOI: 10.1109/42.24861.10.1109/42.24861
  4. Chen, E.-L., choo Chung, P., Chen, C.-L., Tsai, H.-M., & Chang, C.-I. (1998). An automatic diagnostic system for CT liver image classification. IEEE Trans.Biomed. Eng., 45(6), 783-794. DOI: 10.1109/10.678613.10.1109/10.678613
  5. Chu, A., Sehgal, C., & Greenleaf, J. (1990). Use of gray value distribution of run lengths for texture analysis. Pattern Recog. Lett., 11(6), 415-419. DOI: 10.1016/0167-8655(90)90112-F.10.1016/0167-8655(90)90112-F
  6. Duda, D., Kretowski, M., & Bezy-Wendling, J. (2004). Texture-based classification of hepatic primary tumors in multiphase CT. In C. Barillot, D. Haynor, & P. Hellier (Eds.), Medical Image Computing and Computer-Assisted Intervention MICCAI’2004 (Vol. 3217, pp. 1050-1051 Part II). Springer Berlin Heidelberg. DOI: 10.1007/978-3-540-30136-3 133.
  7. Duda, D., Kretowski, M., & Bezy-Wendling, J. (2006). Texture characterization for hepatic tumor recognition in multiphase CT. Biocybern. Biomed. Eng., 26(4), 15-24. Retrieved July 31, 2013, from http://www.ibib.waw.pl/bbe/bbefulltext/BBE264015FT.pdf.
  8. Freund, Y., & Schapire, R. E. (1997). A decision-theoretic generalization of online learning and an application to boosting. J. Comput. Syst. Sci., 55(1), 119-139. DOI: 10.1006/jcss.1997.1504.10.1006/jcss.1997.1504
  9. Galloway, M. M. (1975). Texture analysis using gray level run lengths. Comput. Graph. Image Process., 4(2), 172-179. DOI: 10.1016/S0146-664X(75)80008-6.10.1016/S0146-664X(75)80008-6
  10. Gletsos,M.,Mougiakakou, S.,Matsopoulos, G., Nikita, K., Nikita, A., & Kelekis, D. (2003). A computer-aided diagnostic system to characterize CT focal liver lesions: design and optimization of a neural network classifier. IEEE Trans. Inf. Technol. Biomed., 7(3), 153-162. DOI: 10.1109/TITB.2003.813793.10.1109/TITB.2003.813793
  11. Gonzalez, R. C., &Woods, R. E. (2002). Digital image processing (2nd ed.). Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc.
  12. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., & Witten, I. H. (2009). The WEKA data mining software: an update. SIGKDD Explor. Newsl., 11(1), 10-18. DOI: 10.1145/1656274.1656278.10.1145/1656274.1656278
  13. Haralick, R., Shanmugam, K., & Dinstein, I. (1973). Textural features for image classification. IEEE Trans. Syst. Man Cybern., SMC-3(6), 610-621. DOI: 10.1109/TSMC.1973.4309314.10.1109/TSMC.1973.4309314
  14. Horng, M.-H., Sun, Y.-N., & Lin, X.-Z. (1996). Texture feature coding method for classification of liver sonography. In B. Buxton & R. Cipolla (Eds.), Computer Vision - ECCV’96 (Vol. 1064, pp. 209-218 Part I). Springer Berlin Heidelberg. DOI: 10.1007/BFb0015537. 10.1007/BFb0015537
  15. Husain, S., & Shigeru, E. (2000). Use of neural networks for feature based recognition of liver region on CT images. In Neural Networks for Signal Processing X, 2000. Proceedings of the 2000 IEEE Signal Processing Society Workshop, 11-13 December 2000. (Vol. 2, pp. 831-840). New York, USA: The IEEE, Inc. DOI: 10.1109/NNSP.2000.890163.10.1109/NNSP.2000.890163
  16. Jemal, A., Bray, F., Center, M. M., Ferlay, J., Ward, E., & Forman, D. (2011). Global cancer statistics. CA: A Cancer J. Clin., 61(2), 69-90. DOI: 10.3322/ caac.20107.10.3322/caac.20107
  17. Lambrou, T., Linney, A. D., & Todd-Pokropek, A. (2006). Wavelet transform analysis and classification of the liver from computed tomography datasets. In Proceedings of the 6th International IEEE EMBS Special Topic Conference. 26-28 October 2006. Retrieved July 31, 2013, from http://medlab.cs.uoi.gr/itab2006/proceedings/medicalimaging/107.pdf.
  18. Laws, K. I. (1980). Textured image segmentation. Unpublished doctoral dissertation, University of Southern California, Los Angeles, California, USA.10.21236/ADA083283
  19. Mala, K., Sadasivam, V., & Alagappan, S. (2006). Neural network based texture analysis of liver tumor from computed tomography images. Int. J. Biol. Life Sci., 2(1), 33-40. Retrieved July 31, 2013, from http://www.waset.org/journals/ijbls/v2/v2-1-5.pdf.
  20. Mougiakakou, S., Valavanis, I., Mouravliansky, N., Nikita, K., & Nikita, K. (2009). Diagnosis: a telematics-enabled system for medical image archiving, management, and diagnosis assistance. IEEE Trans. Instrum. Meas., 58(7), 2113-2120. DOI: 10.1109/TIM.2009.2015538.10.1109/TIM.2009.2015538
  21. Quatrehomme, A.,Millet, I., Hoa, D., Subsol, G., & Puech,W. (2013). Assessing the classification of liver focal lesions by using multi-phase computer tomography scans. In H. Greenspan, H. Muller, & T. Syeda-Mahmood (Eds.), Medical Content-Based Retrieval for Clinical Decision Support MCBR-CDS 2012 (Vol. 7723, pp. 80-91). Springer Berlin Heidelberg. DOI: 10.1007/978-3-642-36678-9 8.10.1007/978-3-642-36678-9
  22. Quinlan, J. R. (1993). C4.5: Programs for machine learning. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.
  23. Smutek, D., Shimizu, A., Tesar, L., Kobatake, H., Nawano, S., & Svacina, S. (2006). Automatic internal medicine diagnostics using statistical imaging methods. In 19th IEEE International Symposium on Computer-Based Medical Systems (CBMS’2006), 22-23 June 2006 (pp. 405-412). Los Alamitos, California, USA: The IEEE Computer Society Press. DOI: 10.1109/CBMS.2006.56.10.1109/CBMS.2006.56
  24. Stoitsis, J., Valavanis, I., Mougiakakou, S. G., Golemati, S., Nikita, A., & Nikita, K. S. (2006). Computer aided diagnosis based on medical image processing and artificial intelligence methods. Nucl. Instrum. Methods Phys. Res., Sect. A, 569(2), 591-595. DOI: 10.1016/j.nima.2006.08.134. 10.1016/j.nima.2006.08.134
  25. Wang, L., Zhang, Z., Liu, J., Jiang, B., Duan, X., Xie, Q., Hu, D., Li, Z. (2009). Classification of hepatic tissues from CT images based on texture features and multiclass Support Vector Machines. In W. Yu, H. He, & N. Zhang (Eds.), Advances in Neural Networks ISNN 2009 (Vol. 5552, pp. 374-381 Part 2). Springer Berlin Heidelberg. DOI: 10.1007/978-3-642-01510-6 43.10.1007/978-3-642-01510-6
  26. Weszka, J. S., Dyer, C. R., & Rosenfeld, A. (1976). A comparative study of texture measures for terrain classification. IEEE Trans. Syst., Man Cybern., SMC-6(4), 269-285. DOI: 10.1109/TSMC.1976.5408777.10.1109/TSMC.1976.5408777
  27. Ye, J., Sun, Y., Wang, S., Gu, L., Qian, L., & Xu, J. (2009). Multiphase CT image based hepatic lesion diagnosis by SVM. In 2nd International Conference on Biomedical Engineering and Informatics (BMEI’2009), 17-19 October 2009 (pp. 1-5). New York, USA: The IEEE, Inc. DOI: 10.1109/BMEI.2009.5304774. 10.1109/BMEI.2009.5304774
DOI: https://doi.org/10.2478/slgr-2013-0039 | Journal eISSN: 2199-6059 | Journal ISSN: 0860-150X
Language: English
Page range: 49 - 70
Published on: Dec 31, 2013
Published by: University of Białystok, Department of Pedagogy and Psychology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year
Related subjects:

© 2013 Dorota Duda, Marek Krętowski, Johanne Bézy-Wendling, published by University of Białystok, Department of Pedagogy and Psychology
This work is licensed under the Creative Commons License.