Have a personal or library account? Click to login

Classification Issue in the IVF ICSI/ET Data Analysis: Early Treatment Outcome Prognosis

Open Access
|Dec 2013

References

  1. Breiman, L. (2001). Random Forests. Machine Learning, 45(1), 5-32.10.1023/A:1010933404324
  2. Liaw, A., & Wiener, M. (2002). Classification and Regression by randomForest. R News, 2 (3), 18-22.
  3. Meyer, D., Dimitriadou, E., Hornik, K., Weingessel, A., & Leisch F. (2012). e1071: Misc Functions of the Department of Statistics (e1071), TU Wien. R package version 1.6-1. Retrieved from http://CRAN.R-project.org/package=e1071.
  4. Milewski, R., Malinowski, P., Milewska, A. J., Ziniewicz, P., Czerniecki, J., Pierzyński, P., & Wołczyński S. (2012). Classification issue in the IVF ICSI/ET data analysis. Studies in Logic, Grammar and Rhetoric, 29(42), 75-85.
  5. Milewski, R., Malinowski, P., Milewska, A. J., Czerniecki, J., Ziniewicz, P., & Wołczyński, S. (2011). Nearest neighbor concept in the study of IVF ICSI/ET treatment effectiveness. Studies in Logic, Grammar and Rhetoric, 25(38), 49-57.
  6. Milewski, R., Malinowski, P., Milewska, A. J., Ziniewicz, P., & Wołczyński, S. (2010). The usage of margin-based feature selection algorithm in IVF ICSI/ET data analysis. Studies in Logic, Grammar and Rhetoric, 21(34), 35-46.
  7. Milewski, R., Milewska, A. J., Czerniecki, J., Leśniewska, M., & Wołczyński, S. (2013). Analysis of the demographic profile of patients treated for infertility using assisted reproductive techniques in 2005-2010. Ginekologia Polska, 84(7), 609-614.10.17772/gp/1612
  8. Milewski, R., Milewska, A. J., Domitrz, J., & Wołczyński, S. (2008). In vitro fertilization ICSI/ET in women over 40. Przegląd Menopauzalny, 7(2), 85-90.
  9. Oba, S., Sato, M., Takemasa, I., Monden, M., Matsubara, K., & Ishii, S. (2003). A Bayesian missing value estimation method for gene expression profile data. Bioinformatics, 19(16), 2088-2096.10.1093/bioinformatics/btg287
  10. Radwan, J. (2011). Epidemiologia niepłodności. In J. Radwan, & S. Wołczyński (Eds.), Niepłodność i rozrod wspomagany (pp. 11-14). Poznań: Termedia.
  11. Stekhoven, D. J., & B¨uhlmann, P. (2012a). MissForest non-parametric missing value imputation for mixed-type data. Bioinformatics, 1(28), 112-118.10.1093/bioinformatics/btr597
  12. Stekhoven, D. J., & B¨uhlmann, P. (2012b). missForest: Nonparametric Missing Value Imputation using Random Forest R package version 1.3. Retrieved from http://CRAN.R-project.org/package=missForest.10.1093/bioinformatics/btr597
  13. Templ, M., Alfons, A., Kowarik, A. & Prantner, B. (2013). VIM: Visualization and Imputation of Missing Values. R package version 3.0.3.1. Retrieved from http://CRAN.R-project.org/package=VIM.
DOI: https://doi.org/10.2478/slgr-2013-0034 | Journal eISSN: 2199-6059 | Journal ISSN: 0860-150X
Language: English
Page range: 103 - 115
Published on: Dec 31, 2013
Published by: University of Białystok, Department of Pedagogy and Psychology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year
Related subjects:

© 2013 Paweł Malinowski, Robert Milewski, Piotr Ziniewicz, Anna Justyna Milewsk, Jan Czerniecki, Sławomir Wołczyński, published by University of Białystok, Department of Pedagogy and Psychology
This work is licensed under the Creative Commons License.