Have a personal or library account? Click to login
Materials with Shape Memory Effect for Applications in Maritime Cover

Materials with Shape Memory Effect for Applications in Maritime

Open Access
|Sep 2019

References

  1. [1] Alaneme K. K., Okotete E. A., Reconciling viability and cost-effective shape memory alloy options — a review of copper and iron based shape memory metallic systems, ‘Engineering Science and Technology, an International Journal’, 2016, 19, pp. 1582–1592.10.1016/j.jestch.2016.05.010
  2. [2] Ameendraraj S., Fatigue behaviour of copper zinc aluminum shape memory alloys, Master thesis, University of Manitoba, 1998.
  3. [3] Baz A., Ro J., Mutua M., Gilheany J., Active Buckling Control of Nitinol-Reinforced Composite Beams, ADPA/AIAA/ASME/SPIE Conference on Active Materials and Adaptive Structures-Session 1992, 10, pp. 167–176.10.1007/978-94-017-1903-2_4
  4. [4] Bhattacharya K., Conti S., Zanzotto G., Zimmer J., Crystal symmetry and the reversibility of martensitic transformations, ‘Nature’, 2004, 428, pp. 55–59.10.1038/nature02378
  5. [5] Dasgupta R., A look into cu-based shape memory alloys: present scenario and future prospects, ‘Journal Material Research’, 2014, 29 (16), pp. 1681–1698.10.1557/jmr.2014.189
  6. [6] Duerig T. W., Melton K. N., Proc. of SMA ‘86, Guilin 1986, 397.
  7. [7] Duerig T. W., Melton K. N., Stoeckel D., Wayman C. M., Engineering aspects of Shape Memory Alloys, Butterworth — Heinemann, London 1990.10.1016/B978-0-7506-1009-4.50015-9
  8. [8] Dye T. E., An Experimental Investigation of the Behavior of Nitinol, Master thesis, Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, 1990.
  9. [9] European Patent Application, EP 3 290 768 A1, Published in accordance with Art. 153(4) EPC, 2016.
  10. [10] Funakubo H., Shape Memory Alloys, Gordon and Breach, London 1984.
  11. [11] Gilbenson R. G., Working With Shape Memory Wires, Mondotronics, 1991.
  12. [12] Graesser E. J., Cozzarelli F. A., Shape Memory Alloys as New Materials for Aseimic Isolation, ‘Journal of Engineering Mechanics’, 1992, 117 (11), pp. 2590–2608.10.1061/(ASCE)0733-9399(1991)117:11(2590)
  13. [13] Gupta P. K., Seena P., Rai R. N., Studies on shape memory alloys — a review, ‘International Journal Advance Engineering’, 2012, 3 (1), pp. 378–382.
  14. [14] Hodgson D. E., Shape memory applications, ‘Shape Memory Alloys’, 1990, Vol. 2: Properties and Selection: Nonferrous Alloys and Special-Purpose Materials, ASM Handbook Committee, pp. 897–902.10.31399/asm.hb.v02.a0001100
  15. [15] Huang W., Shape Memory Alloys and their Application to Actuators for Deployable Structures, PhD thesis, University of Cambridge, Department of Engineering, 1998.
  16. [16] Humbeeck J. van, Damping properties of shape memory alloys during phase trans-formation, ‘Journal Physic IV’, 1996, 06 (C8), pp. C8-371–C8-380.10.1051/jp4:1996880
  17. [17] Humbeeck J. van, Kustov S., Active and passive damping of noise and vibrations through shape memory alloys: applications and mechanisms, ‘Smart Material Structure’, 2005, 14 (5), pp. S171–S181.10.1088/0964-1726/14/5/001
  18. [18] Humbeeck J. van, Shape Memory Alloys: A Material and a Technology, ‘Advanced Engineering Materials’, 2001, 3, pp. 837–850.10.1002/1527-2648(200111)3:11<;837::AID-ADEM837>3.0.CO;2-0
  19. [19] Jia J., Rogers C. A., Formulation of a Laminated Shell Theory Incorporating Embedded Distributed Actuators, ‘Journal of Mechanical Design’, 1990, 112, pp. 596–604.10.1115/1.2912652
  20. [20] Juan J. S., Applications of Shape Memory Alloys to the Transport Industry, International Congress on Innovative Solutions for the Advancement of the Transport Industry, San Sebastian, October 2006.
  21. [21] Kakizawa T., Ohno S., Utilization of Shape Memory Alloy as a Sensing Material for Smart Structures, in Advanced Composite Materials in Bridges and Structures, 1996, pp. 67–74.
  22. [22] Kim S., Passive Control Techniques in Earthquake Engineering, Proceedings of the SPIE, 1995, 2445, pp. 214–224.10.1117/12.208889
  23. [23] Kocurek C., Green C., Patent Application Publication, US 2013/0015376 A1, United States, 2013.
  24. [24] Kubenova M., Processing and martensitic transformations of NiTi based alloys, PhD thesis, Brno University of Technology, 2014.
  25. [25] Kumar P. K., Lagoudas D. C., Introduction to shape memory alloys, [in:] Shape Memory Alloys. Modelling and Engineering Applications, 2008, pp. 1–51.10.1007/978-0-387-47685-8_1
  26. [26] Liu Y., Some factors affecting the transformation hysteresis in shape memory alloys, [in:] Shape Memory Alloys, ed. H. R. Chen, Nova Science Publishers Inc., 2010, pp. 361–369.
  27. [27] Nemat-Nasser S., Guo W. G., Superelastic and cyclic response of NiTi SMA at various strain rates and temperatures, ‘Mech. Mater.’, 2006, 38, pp. 463–474.10.1016/j.mechmat.2005.07.004
  28. [28] Ortin J., Dealey L., Hysteresis in shape memory alloys, ‘International Journal Non-Linear Mechanic’, 2002, 37, pp. 1275–1281.10.1016/S0020-7462(02)00027-6
  29. [29] Otsuka K., Wayman C. M., Shape Memory Materials, Cambridge University Press, Cambridge 1998.
  30. [30] Perkins J., Muesing W. E., Martensitic transformations cycling effect on Cu–Zn–Al shape memory alloys, ‘Metall. Trans. A’, 1983, 14 (1), pp. 33–36.10.1007/BF02643734
  31. [31] Prasad D. S., Shoba C., Varma K. R., Damping behavior of commonly used reinforcement powders — an experimental approach, ‘International Journal Engineering Science Technology’, 2015, 18, pp. 674–679.10.1016/j.jestch.2015.05.001
  32. [32] Proft J. L., Duerig T. W., Engineering Aspects of Shape Memory Alloys, Butterworth-Heinemann, London 1990.10.1016/B978-0-7506-1009-4.50015-9
  33. [33] Stoeckel D., Shape-memory alloys prompt new actuator designs, ‘Advanced Materials and Processes’, 1990, 138, pp. 33–38.
  34. [34] Stoeckel D., The Shape Memory Effect — Phenomenon, Alloys and Applications, ‘Proceedings: Shape Memory Alloys for Power Systems EPRI’, 1995, pp. 1–13.
  35. [35] Sun G., Sun C. T., One-Dimensional Constitutive Relation for Shape-Memory Alloy-Reinforced Composite Lamina, ‘Journal of Materials Science’, 1993, 28, pp. 6323–6328.10.1007/BF01352191
  36. [36] Whitcher F. D., Simulation of in Vivo Loading Conditions of Nitinol Vascular Stent Structures, ‘Computers & Structures’, 1997, 64 (5/6), pp. 1005–1011.10.1016/S0045-7949(97)00014-X
  37. [37] Witting P. R., Cozzarelli F. A., Shape Memory Structural Dampers: Material Properties, Design and Seismic Testing, Technical Report NCEER-92-0013, 1992.
  38. [38] Wittorf M., Browne A., Johnson N., Brown J. H., Patent Application Publication, US008299637B2, United States, 2012.
Language: English
Page range: 25 - 41
Submitted on: Aug 27, 2019
|
Accepted on: Sep 30, 2019
|
Published on: Sep 30, 2019
Published by: Polish Naval Academy
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2019 Špiro Ivošević, Rebeka Rudolf, published by Polish Naval Academy
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.