Have a personal or library account? Click to login
Big Data for Anomaly Detection in Maritime Surveillance: Spatial AIS Data Analysis for Tankers Cover

Big Data for Anomaly Detection in Maritime Surveillance: Spatial AIS Data Analysis for Tankers

Open Access
|Feb 2019

References

  1. [1] Abramowicz W., Filipiak D., Małyszko J., Stróżyna M., Węcel K., Maritime Domain Awareness System Supplied with External Information-Use-Case of the SIMMO System, Publication materials of 7th International Science and Technology Conference NATCON on ‘Naval Technologies for Defence and Security”, ed. T. Szybrycht, Polish Naval Academy, Gdynia 2016, pp. 1–20.
  2. [2] Andler S. F., Fredin M., Gustavsson P. M., van Laere J., Nilsson M., Svenson P., SMARTracIn: A Concept for Spoof Resistant Tracking of Vessels and Detection of Adverse Intentions, ‘Sensors, and Command, Control, Communications, and Intelligence (C3I) Technologies for Homeland Security and Homeland Defense VIII’, 2009, Vol. 7305, 73050g-73050g-9, DOI: 10.1117/12.818567.10.1117/12.818567
  3. [3] Bomberger N. A., Rhodes B. J., Seibert M., Waxman A. M., Associative Learning of Vessel Motion Patterns for Maritime Situation Awareness, Proc. of 9th International Conference on Information Fusion, FUSION 2006, pp. 1–8, DOI: 10.1109/Icif.2006.301661.10.1109/Icif.2006.301661
  4. [4] Bouejala A., Chaze X., Guarnieri F., Napoli A., A Bayesian Network to Manage Risks of Maritime Piracy Against Offshore Oil Fields, Safety Science, Elsevier, 2014, Vol. 68, pp. 222–230, DOI: 10.1016/j.ssci.2014.04.010.10.1016/j.ssci.2014.04.010
  5. [5] Brax C., Anomaly Detection in the Surveillance Domain, PhD Thesis, Örebro Universitet, 2011.
  6. [6] Chandola V., Banerjee A., Kumar V., Anomaly Detection: A Survey, ‘ACM Comput. Surv.’, 2009, Vol. 41, No. 3, pp. 15:1–15:58, DOI: 10.1145/1541880.1541882.10.1145/1541880.1541882
  7. [7] European Maritime Safety Agency, Important Information Regarding The Publication of Low and Very Low Performance Companies According to Article 27 of Directive 2009/16/EC on Port State Control and Commission Regulation (EU) 802/2010 as Amended Implementing Article 10(3) and Article 27 of Directive 2009/16/EC of the European Parliament and of the Council as Regards Company Performance, [online], https://portal.emsa.europa.eu/web/thetis/company-performance-legal-information [access 30.04.2015].
  8. [8] Fooladvandi F., Brax C., Gustavsson P., Fredin M., Signature-Based Activity Detection Based on Bayesian Networks Acquired from Expert Knowledge, Proc. of 12th International Conference on Information Fusion, FUSION 2009, pp. 436–443.
  9. [9] Helldin T., Riveiro M., Explanation Methods for Bayesian Networks: Review and Application to a Maritime Scenario, Proc. of The 3rd Annual Skövde Workshop on Information Fusion Topics, SWIFT 2009, pp. 11–16.
  10. [10] Hodge V. J., Austin J., A Survey of Outlier Detection Methodologies, ‘Artificial Intelligence Review’, 2004, Vol. 22, No. 2, pp. 85–126.10.1023/B:AIRE.0000045502.10941.a9
  11. [11] Johansson F., Falkman G., Detection of Vessel Anomalies — a Bayesian Network Approach, 3rd International Conference on Intelligent Sensors, Sensor Networks and Information, 2007, pp. 395–400.10.1109/ISSNIP.2007.4496876
  12. [12] Kazemi S., Abghari S., Lavesson N., Johnson H., Ryman P., Open Data for Anomaly Detection in Maritime Surveillance, ‘Expert Syst. Appl.’, 2013, Vol. 40, No. 14, pp. 5719–5729, DOI: 10.1016/J.Eswa.2013.04.029.10.1016/J.Eswa.2013.04.029
  13. [13] Kraiman J. B., Arouh S. L., Webb M. L., Automated Anomaly Detection Processor, Proc. of SPIE: Enabling Technologies for Simulation Science VI, 2002, eds. A. F. Sisti, D. A. Trevisani, pp. 128–137.10.1117/12.474940
  14. [14] Laere J., Nilsson M., Evaluation of a Workshop to Capture Knowledge from Subject Matter Experts in Maritime Surveillance, Proc. of 12th International Conference on Information Fusion, FUSION 2009, pp. 171–178.
  15. [15] Lane R. O., Nevell D. A., Hayward S. D., Beaney T. W., Maritime Anomaly Detection and Threat Assessment, Proc. of 13th International Conference on Information Fusion, FUSION 2010, pp. 1–8.10.1109/ICIF.2010.5711998
  16. [16] Laxhammar R., Anomaly Detection for Sea Surveillance, Proc. of 11th International Conference on Information Fusion, FUSION 2008, pp. 1–8.
  17. [17] Laxhammar R., Falkman G., Conformal Prediction for Distribution-Independent Anomaly Detection in Streaming Vessel Data, Proc. of 1st International Workshop on Novel Data Stream Pattern Mining Techniques, 2010, pp. 47–55.10.1145/1833280.1833287
  18. [18] Laxhammar R., Falkman G., Sviestins E., Anomaly Detection in Sea Traffic-A Comparison of the Gaussian Mixture Model and The Kernel Density Estimator, Proc. of 12th International Conference on Information Fusion, FUSION 2009, pp. 756–763.
  19. [19] Małyszko J., Abramowicz W., Stróżyna M., Named Entity Disambiguation for Maritime-Related Data Retrieved from Heterogeneous Sources, ‘TRANSNAV: International Journal on Marine Navigation and Safety of Sea Transportation’, 2016, Vol. 10, No. 3, pp. 465–477.10.12716/1001.10.03.12
  20. [20] Martineau E., Roy J., Maritime Anomaly Detection: Domain Introduction and Review of Selected Literature, Technical Report, DTIC Document, October 2011, [online], https://apps.dtic.mil/dtic/tr/fulltext/u2/a554310.pdf [access 18.03.2018].
  21. [21] Marz N., Warren J., Big Data: Principles and Best Practices of Scalable Real-time Data Systems, Manning Publications Co., 2015.
  22. [22] Mascaro S., Korb K. B., Nicholson A. E., Learning Abnormal Vessel Behaviour from AIS Data with Bayesian Networks at Two Time Scales, Clayton School of Information Technology, Monash University, August 2010, [online], https://bayesian-intelligence.com/publications/TR2010_4_AbnormalVesselBehaviour.pdf [access 20.03.2018].
  23. [23] Mascaro S., Nicholson A. E., Korb K. B., Anomaly Detection in Vessel Tracks Using Bayesian Networks, ‘Int. J. Approx. Reasoning’, 2014, Vol. 55, No. 1, pp. 84–98, DOI: 10.1016/J.Ijar.2013.03.012.10.1016/J.Ijar.2013.03.012
  24. [24] Matthews M., Martin L. B., Tario C. D., Brown A. L., A Non-Intrusive Alert System for Maritime Anomalies: Literature Review and the Development and Assessment of Interface Design Concepts [Systeme D’alerte Non Intrusive en Cas D’anomalies Maritimes: Examen de la Documentation et Elaboration/Evaluation de Concepts D’interface], Technical Report, DTIC Document, March 2009, [online], http://cradpdf.drdc-rddc.gc.ca/PDFS/unc88/p531847.pdf [access 18.03.2018].
  25. [25] MMO, Mapping UK Shipping Density and Routes from AIS, Technical Report, Marine Managment Organisation, MMO Project No. 1066, Newcastle 2014.
  26. [26] Pallotta G., Vespe M., Bryan K., Vessel Pattern Knowledge Discovery from AIS Data: A Framework for Anomaly Detection and Route Prediction, Entropy’, 2013, Vol. 15, No. 6, pp. 2218–2245.10.3390/e15062218
  27. [27] Pozo F., Dymock A., Feldt L., Hebrard P., Monteforte F., Sanfelice D., Maritime Surveillance in Support of CSDP, Technical Report, European Defence Agency, April 2010, [online], http://www.offnews.info/downloads/wisePenReportApril2010.pdf [access 20.03.2018].
  28. [28] Rhodes B. J., Bomberger N. A., Seibert M., Waxman A. M., Maritime Situation Monitoring and Awareness Using Learning Mechanisms, Proc. of Military Communications Conference, IEEE, Milcom 2005, pp. 646–652.
  29. [29] Riveiro M., Visual Analytics for Maritime Anomaly Detection, PhD Thesis, Örebro Universitet, 2011.
  30. [30] Riveiro M., Falkman G., Ziemke T., Improving Maritime Anomaly Detection and Situation Awareness Through Interactive Visualization, Proc. of 11th International Conference on Information Fusion, FUSION 2008, pp. 1–8.
  31. [31] Roy J., Davenport M., Categorization of Maritime Anomalies for Notification and Alerting Purpose, Technical Report, Defence R & D Canada — Valcartier, October 2009.
  32. [32] Shearer C., The CRISP-DM Model: The New Blueprint for Data Mining, ‘Journal of Data Warehousing’, 2000, Vol. 5, No. 4, pp. 13–22.
  33. [33] Shelmerdine R. L., Teasing out the Detail: How Our Understanding of Marine AIS Data Can Better Inform Industries, Developments, And Planning, ‘Marine Policy’, 2015, Vol. 54, pp. 17–25.10.1016/j.marpol.2014.12.010
  34. [34] Smith M., Reece S., Roberts S. J., Rezek I., Online Maritime Abnormality Detection Using Gaussian Processes and Extreme Value Theory, ICDM, 2012, pp. 645–654.10.1109/ICDM.2012.137
  35. [35] Stróżyna M., Eiden G., Abramowicz W., Filipiak D., Małyszko J., Węcel K., A Framework for the Quality-Based Selection and Retrieval of Open Data — A Use Case from the Maritime Domain, ‘Electronic Markets’, 2018, Vol. 28, Issue 2, pp. 219–233.10.1007/s12525-017-0277-y
  36. [36] Stróżyna M., Małyszko J., Węcel K., Filipiak D., Abramowicz W., Architecture of Maritime Awareness System Supplied with External Information, ‘Annual of Navigation’, 2016, Vol. 23, No. 1, pp. 135–149.10.1515/aon-2016-0009
  37. [37] Tun M. H., Chambers G. S., Tan T., Ly T., Maritime Port Intelligence Using AIS Data, ‘Recent Advances in Security Technology’, 2007, No. 33, pp. 33–43.
  38. [38] Wu L., Xu Y., Wang Q., Wang F., Xu Z., Mapping Global Shipping Density From AIS Data, The Journal of Navigation’, 2017, Vol. 70, No. 1, pp. 67–81.10.1017/S0373463316000345
  39. [39] Zaharia M., Chowdhury M., Das T., Dave A., Ma J., McCauley M., Franklin M. J., Shenker S., Stoica I., Resilient Distributed Datasets: A Fault-tolerant Abstraction for in-Memory Cluster Computing, Proc. of 9th Usenix Conference on Networked Systems Design and Implementation, April 2012, pp. 2–2.
Language: English
Page range: 5 - 28
Submitted on: May 8, 2018
Accepted on: Nov 12, 2018
Published on: Feb 1, 2019
Published by: Polish Naval Academy
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2019 Dominik Filipiak, Milena Stróżyna, Krzysztof Węcel, Witold Abramowicz, published by Polish Naval Academy
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.