Have a personal or library account? Click to login

Metformin Reverses the Effects of Angiotensin 2 in Human Mammary Arteries by Modulating the Expression of Nitric Oxide Synthases

Open Access
|Sep 2022

References

  1. 1. Becher UM, Endtmann C, Tiyerili V, Nickenig G, Werner N. Endothelial Damage and Regeneration: The Role of the Renin-Angiotensin-Aldosterone System. Current Hypertension Reports. 2011;13(1):86-92.10.1007/s11906-010-0171-x21108024
  2. 2. Silva GM, França-Falcão MS, Calzerra NTM, Luz MS, Gadelha DDA, Balarini CM, et al. Role of Renin- Angiotensin System Components in Atherosclerosis: Focus on Ang-II, ACE2, and Ang-1-7. Frontiers in physiology. 2020;11:1067.10.3389/fphys.2020.01067749497033013457
  3. 3. Lüscher TF. Endothelial dysfunction: the role and impact of the renin-angiotensin system. Heart. 2000;84(suppl 1):i20.10.1136/heart.84.suppl_1.i20176653510956315
  4. 4. Ruiz-Ortega M, Lorenzo O, Rupérez M, Esteban V, Suzuki Y, Mezzano S, et al. Role of the Renin- Angiotensin System in Vascular Diseases. Hypertension (Dallas, Tex : 1979). 2001;38(6):1382-7.10.1161/hy1201.10058911751722
  5. 5. Rena G, Lang CC. Repurposing Metformin for Cardiovascular Disease. Circulation. 2018;137(5):422-4.10.1161/CIRCULATIONAHA.117.03173529378754
  6. 6. Manzella D, Grella R, Esposito K, Giugliano D, Barbagallo M, Paolisso G. Blood pressure and cardiac autonomic nervous system in obese type 2 diabetic patients: effect of metformin administration. Am J Hypertens. 2004;17(3):223-7.10.1016/j.amjhyper.2003.11.00615001195
  7. 7. de Jager J, Kooy A, Schalkwijk C, van der Kolk J, Lehert P, Bets D, et al. Long-term effects of metformin on endothelial function in type 2 diabetes: a randomized controlled trial. J Intern Med. 2014;275(1):59-70.10.1111/joim.1212823981104
  8. 8. Wulffele MG, Kooy A, Lehert P, Bets D, Donker AJ, Stehouwer CD. Does metformin decrease blood pressure in patients with Type 2 diabetes intensively treated with insulin? Diabet Med. 2005;22(7):907-13.10.1111/j.1464-5491.2005.01554.x15975107
  9. 9. de Aguiar LG, Bahia LR, Villela N, Laflor C, Sicuro F, Wiernsperger N, et al. Metformin improves endothelial vascular reactivity in first-degree relatives of type 2 diabetic patients with metabolic syndrome and normal glucose tolerance. Diabetes care. 2006;29(5):1083-9.10.2337/dc05-2146
  10. 10. Ionică LN, Gaiță L, Bînă AM, Soșdean R, Lighezan R, Sima A, et al. Metformin alleviates monoamine oxidaserelated vascular oxidative stress and endothelial dysfunction in rats with diet-induced obesity. Mol Cell Biochem. 2021;476(11):4019-29.10.1007/s11010-021-04194-234216348
  11. 11. Liu J, Aylor KW, Chai W, Barrett EJ, Liu Z. Metformin prevents endothelial oxidative stress and microvascular insulin resistance during obesity development in male rats. American Journal of Physiology-Endocrinology and Metabolism. 2022;322(3):E293-E306.10.1152/ajpendo.00240.2021889700335128961
  12. 12. Ding Y, Zhou Y, Ling P, Feng X, Luo S, Zheng X, et al. Metformin in cardiovascular diabetology: a focused review of its impact on endothelial function. Theranostics. 2021;11(19):9376-96.10.7150/thno.64706849050234646376
  13. 13. Cameron AR, Morrison VL, Levin D, Mohan M, Forteath C, Beall C, et al. Anti-Inflammatory Effects of Metformin Irrespective of Diabetes Status. Circulation research. 2016;119(5):652-65.10.1161/CIRCRESAHA.116.308445499045927418629
  14. 14. Bai B, Chen H. Metformin: A Novel Weapon Against Inflammation. Front Pharmacol. 2021;12:622262.10.3389/fphar.2021.622262788016133584319
  15. 15. LaMoia TE, Shulman GI. Cellular and Molecular Mechanisms of Metformin Action. Endocrine reviews. 2020.10.1210/endrev/bnaa023784608632897388
  16. 16. Danila MD, Privistirescu A, Duicu OM, Ratiu CD, Angoulvant D, Muntean DM, et al. The effect of purinergic signaling via the P2Y11 receptor on vascular function in a rat model of acute inflammation. Molecular and cellular biochemistry. 2017.10.1007/s11010-017-2973-528213772
  17. 17. Duicu OM, Lighezan R, Sturza A, Balica R, Vaduva A, Feier H, et al. Assessment of Mitochondrial Dysfunction and Monoamine Oxidase Contribution to Oxidative Stress in Human Diabetic Hearts. Oxidative medicine and cellular longevity. 2016;2016:8470394.10.1155/2016/8470394484677027190576
  18. 18. Sturza A, Leisegang MS, Babelova A, Schröder K, Benkhoff S, Loot AE, et al. Monoamine oxidases are mediators of endothelial dysfunction in the mouse aorta. Hypertension. 2013;62(1):140-6.10.1161/HYPERTENSIONAHA.113.0131423670301
  19. 19. Schubert M, Hansen S, Leefmann J, Guan K. Repurposing Antidiabetic Drugs for Cardiovascular Disease. Front Physiol. 2020;11:568632.10.3389/fphys.2020.568632752255333041865
  20. 20. Ala M, Ala M. Metformin for Cardiovascular Protection, Inflammatory Bowel Disease, Osteoporosis, Periodontitis, Polycystic Ovarian Syndrome, Neurodegeneration, Cancer, Inflammation and Senescence: What Is Next? ACS Pharmacology & Translational Science. 2021;4(6):1747-70.10.1021/acsptsci.1c00167866970934927008
  21. 21. Giaccari A, Solini A, Frontoni S, Del Prato S. Metformin Benefits: Another Example for Alternative Energy Substrate Mechanism? Diabetes Care. 2021;44(3): 647-54.10.2337/dc20-1964789624933608326
  22. 22. Katakam PV, Ujhelyi MR, Hoenig M, Miller AW. Metformin improves vascular function in insulinresistant rats. Hypertension (Dallas, Tex:1979). 2000; 35(1 Pt 1):108-12.10.1161/01.HYP.35.1.108
  23. 23. Davis BJ, Xie Z, Viollet B, Zou MH. Activation of the AMP-activated kinase by antidiabetes drug metformin stimulates nitric oxide synthesis in vivo by promoting the association of heat shock protein 90 and endothelial nitric oxide synthase. Diabetes. 2006;55(2):496-505.10.2337/diabetes.55.02.06.db05-106416443786
  24. 24. Gundewar S, Calvert JW, Jha S, Toedt-Pingel I, Ji SY, Nunez D, et al. Activation of AMP-activated protein kinase by metformin improves left ventricular function and survival in heart failure. Circ Res. 2009;104(3):403-11.10.1161/CIRCRESAHA.108.190918270976119096023
  25. 25. Yu JW, Deng YP, Han X, Ren GF, Cai J, Jiang GJ. Metformin improves the angiogenic functions of endothelial progenitor cells via activating AMPK/eNOS pathway in diabetic mice. Cardiovascular diabetology. 2016;15:88.10.1186/s12933-016-0408-3491282427316923
  26. 26. Davis BJ, Xie Z, Viollet B, Zou M-H. Activation of the AMP-Activated Kinase by Antidiabetes Drug Metformin Stimulates Nitric Oxide Synthesis In Vivo by Promoting the Association of Heat Shock Protein 90 and Endothelial Nitric Oxide Synthase. Diabetes. 2006;55(2):496-505.10.2337/diabetes.55.02.06.db05-1064
  27. 27. Sartoretto JL, Melo GA, Carvalho MH, Nigro D, Passaglia RT, Scavone C, et al. Metformin treatment restores the altered microvascular reactivity in neonatal streptozotocin-induced diabetic rats increasing NOS activity, but not NOS expression. Life sciences. 2005;77(21):2676-89.10.1016/j.lfs.2005.05.02215964597
  28. 28. Kim SA, Choi HC. Metformin inhibits inflammatory response via AMPK-PTEN pathway in vascular smooth muscle cells. Biochem Biophys Res Commun. 2012;425(4):866-72.10.1016/j.bbrc.2012.07.16522898050
  29. 29. Dawood AF, Maarouf A, Alzamil NM, Momenah MA, Shati AA, Bayoumy NM, et al. Metformin Is Associated with the Inhibition of Renal Artery AT1R/ET-1/iNOS Axis in a Rat Model of Diabetic Nephropathy with Suppression of Inflammation and Oxidative Stress and Kidney Injury. Biomedicines. 2022;10(7).10.3390/biomedicines10071644931315035884947
  30. 30. Matsumoto T, Noguchi E, Ishida K, Kobayashi T, Yamada N, Kamata K. Metformin normalizes endothelial function by suppressing vasoconstrictor prostanoids in mesenteric arteries from OLETF rats, a model of type 2 diabetes. Am J Physiol Heart Circ Physiol. 2008;295(3):H1165-h76.10.1152/ajpheart.00486.200818641273
  31. 31. Merce AP, Ionică LN, Bînă AM, Popescu S, Lighezan R, Petrescu L, et al. Monoamine oxidase is a source of cardiac oxidative stress in obese rats: the beneficial role of metformin. Molecular and cellular biochemistry. 2022.10.1007/s11010-022-04490-535723772
  32. 32. Jadhav S, Ferrell W, Greer IA, Petrie JR, Cobbe SM, Sattar N. Effects of metformin on microvascular function and exercise tolerance in women with angina and normal coronary arteries: a randomized, doubleblind, placebo-controlled study. J Am Coll Cardiol. 2006;48(5):956-63.10.1016/j.jacc.2006.04.08816949486
  33. 33. Meaney E, Vela A, Samaniego V, Meaney A, Asbún J, Zempoalteca JC, et al. Metformin, arterial function, intima-media thickness and nitroxidation in metabolic syndrome: the mefisto study. Clin Exp Pharmacol Physiol. 2008;35(8):895-903.10.1111/j.1440-1681.2008.04920.x18346173
DOI: https://doi.org/10.2478/sjecr-2022-0070 | Journal eISSN: 2956-2090 | Journal ISSN: 2956-0454
Language: English
Page range: 201 - 207
Submitted on: Jul 19, 2022
Accepted on: Aug 4, 2022
Published on: Sep 20, 2022
Published by: University of Kragujevac, Faculty of Medical Sciences
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2022 Adrian Merce, Darius G. Buriman, Ana Lascu, Anca M. Bînă, Horea B. Feier, Lucian Petrescu, Claudia Borza, Adrian Sturza, Danina M. Muntean, Octavian M. Crețu, published by University of Kragujevac, Faculty of Medical Sciences
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.