Have a personal or library account? Click to login
The Role of Phosphocreatine in the Perconditioning and Postconditioning of Isolated Rat Heart Cover

The Role of Phosphocreatine in the Perconditioning and Postconditioning of Isolated Rat Heart

Open Access
|Jul 2022

References

  1. 1. Gaddi AV, Galuppo P, Yang J. Creatine Phosphate Administration in Cell Energy Impairment Conditions: A Summary of Past and Present Research. Heart Lung Circ. 2017; 26(10):1026-35.10.1016/j.hlc.2016.12.020
  2. 2. Weiss R, Gerstenblith G, Bottomley P. ATP flux through creatine kinase in the normal, stressed, and failing human heart. Proc Natl Acad Sci U S A. 2005; 102(3):808-13.10.1073/pnas.0408962102
  3. 3. Pascual F, Coleman R. Fuel Availability and Fate in Cardiac Metabolism: A Tale of Two Substrates. Biochim Biophys Acta. 2016; 1861(10):1425-33.10.1016/j.bbalip.2016.03.014
  4. 4. Goldberg IJ, Trent CM, Schulze PC. Lipid metabolism and toxicity in the heart. Cell Metab. 2012; 15(6):805-12.10.1016/j.cmet.2012.04.006
  5. 5. Lopez R, Marzban B, Gao X, Lauinger E, Van den Bergh F, Whitesall SE, Converso-Baran K, Burant CF, Michele DE, Beard DA. Impaired Myocardial Energetics Causes Mechanical Dysfunction in Decompensated Failing Hearts. Function (Oxf). 2020;1(2):zqaa018. doi: 10.1093/function/zqaa018. Epub 2020 Sep 22.
  6. 6. Cao F, Zervou S, Lygate C. Тhе creatine kinase system as a therapeutic target for myocardial ischaemia–reperfusion injury. Biochem Soc Trans. 2018; 46(5):1119-27.10.1042/BST20170504
  7. 7. Zhang W, Zhang H, Xing Y. Protective Effects of Phosphocreatine Administered Post-Treatment Combined With Ischemic Post-Conditioning on Rat Hearts With Myocardial Ischemia/Reperfusion Injury. J Clin Med Res. 2015; 7(4):242-7.10.14740/jocmr2087w
  8. 8. Vinten-Johansen J, Shi W. Perconditioning and postconditioning: current knowledge, knowledge gaps, barriers to adoption, and future directions. J Cardiovasc Pharmacol Ther. 2011 Sep-Dec;16(3-4):260-6.10.1177/1074248411415270
  9. 9. Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem. 1979; 95(2):351-58.10.1016/0003-2697(79)90738-3
  10. 10. Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR. Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids. Anal Biochem. 1982; 126(1):131-8.10.1016/0003-2697(82)90118-X
  11. 11. Auclair C, Voisin E (1985). Nitroblue tetrazolium reduction. In: Greenvvald RA (ed) Handbook of methods for oxygen radical research. CRC Press Une, Boca Raton, pp 123-132.
  12. 12. Pick E, Keisari Y. A simple colorimetric method for the measurement of hydrogen peroxide produced by cells in culture. J Immunol Methods. 1980; 38(1-2): 161-70.10.1016/0022-1759(80)90340-3
  13. 13. Klabunde, Richard E. Cardiovascular Physiology Concepts. Philadelphia, PA: Lippincott Williams & Wilkins/Wolters Kluwer, 2012.
  14. 14. González-Montero J, Brito R, Gajardo AIJ, Rodrigo R. Myocardial reperfusion injury and oxidative stress: Therapeutic opportunities. World J Cardiol. 2018; 10(9): 74–86.10.4330/wjc.v10.i9.74618906930344955
  15. 15. Kryzhanovskii SA, Kandelaki IN, Sharov VG, Kaverina NV, Sakset VA. Effect of exogenous phosphocreatine on the size of experimental myocardial infarction. Kardiologiia. 1988; 28:88–91.
  16. 16. Prabhakar G, Vona-Davis L, Murray D, Lakhani P, Murray G. Phosphocreatine Restores High-Energy Phosphates in Ischemic Myocardium: Implication for Off-Pump Cardiac Revascularization. J Am Coll Surg. 2003; 197(5):786-91.10.1016/j.jamcollsurg.2003.05.00114585415
  17. 17. Zhao ZQ, Corvera JS, Halkos ME, et al. Inhibition of myocardialinjury by ischemic postconditioning during reperfusion: comparison with ischemic preconditioning. Am J Physiol Heart Circ Physiol. 2003; 285(2):H579-H588.10.1152/ajpheart.01064.200212860564
  18. 18. Granfeldt А, Lefer D, Vinten-Johansen J. Protective Ischaemia in Patients: Preconditioning and Postconditioning. Cardiovasc Res. 2009; 83(2):234-46.10.1093/cvr/cvp129270172119398470
  19. 19. Vander Heide RS, Steenbergen C. Cardioprotection and myocardial reperfusion: pitfalls to clinical application. Circ Res. 2013; 113(4):464-77.10.1161/CIRCRESAHA.113.300765382425223908333
  20. 20. Yeh RW, Sidney S, Chandra M, Sorel M, Selby JV, Go AS. Population trends in the incidence and outcomes of acute myocardial infarction. N Engl J Med. 2010; 362(23):2155-65.10.1056/NEJMoa090861020558366
  21. 21. Murphy E, Steenbergen C. Mechanisms underlying acute protection from cardiac ischemia-reperfusion injury. Physiol Rev. 2008; 88(2):581-609.10.1152/physrev.00024.2007319957118391174
  22. 22. Stephanou A, Brar B, Liao Z, Scarabelli T, Knight RA, Latchman DS. Distinct initiator caspases are required for the induction of apoptosis in cardiac myocytes during ischaemia versus reperfusion injury. Cell Death Differ. 2001; 8(4):434-5.10.1038/sj.cdd.440084611550095
  23. 23. Spindler M, Meyer K, Stromer H, Leupold A, Boehm E, Wagner H, et al. (2004) Creatine kinase-deficient hearts exhibit increased susceptibility to ischemia-reperfusion injury and impaired calcium homeostasis. Am J Physiol Heart Circ Physiol 287: H1039–1045.10.1152/ajpheart.01016.200315105171
  24. 24. Tokarska-Schlattner M, Epand RF, Meiler F, Zandomeneghi G, Neumann D, Widmer HR, et al. Phosphocreatine interacts with phospholipids, affects membrane properties and exerts membrane-protective effects. PLoS One. 2012; 7(8):e43178.10.1371/journal.pone.0043178
  25. 25. Bolli R, Becker L, Gross G, Mentzer R Jr, Balshaw D, Lathrop DA. Myocardial protection at acrossroads: the need for translation into clinical therapy. Circ Res. 2004; 95:125–134.10.1161/01.RES.0000137171.97172.d7
  26. 26. Zuo L, Zhou T, Pannell BK, Ziegler AC, Best TM. Biological and physiological role of reactive oxygen species—The good, the bad and the ugly. Acta Physiol. 2015; 214:329–348.10.1111/apha.12515
  27. 27. Tann AW, Boldogh I, Meiss G, Qian W, van Houten B, Mitra S, et al. Apoptosis induced by persistent singlestrand breaks in mitochondrial genome: Critical role of EXOG (5′-EXO/endonuclease) in their repair. J. Biol. Chem. 2011; 286:31975–31983.10.1074/jbc.M110.215715
  28. 28. Fleury C, Mignotte B, Vayssiere JL. Mitochondrial reactive oxygen species in cell death signaling. Biochimie. 2002; 84:131–141.10.1016/S0300-9084(02)01369-X
  29. 29. Lesnefsky EJ, Chen Q, Tandler B, Hoppel CL. Mitochondrial Dysfunction and Myocardial Ischemia-Reperfusion: Implications for Novel Therapies. Annu Rev Pharmacol Toxicol. 2017; 57: 535-565.10.1146/annurev-pharmtox-010715-103335
  30. 30. Brandes RP, Kreuzer J. Vascular NADPH oxidases: molecular mechanisms of activation. Cardiovasc Res. 2005; 65(1):16-27.10.1016/j.cardiores.2004.08.007
  31. 31. Fernandez J, Perez-Alvarez JA, Fernandez-Lopez JA. Thiobarbituric acid test for monitoring lipid oxidation in meat. Food Chemistry. 1997;59(3):345-353.10.1016/S0308-8146(96)00114-8
  32. 32. Cunha MP, Martín-de-Saavedra MD, Romero A, Egea J, Ludka FK, Tasca CI, et al. Both creatine and its product phosphocreatine reduce oxidative stress and afford neuroprotection in an in vitro Parkinson’s model. ASN Neuro. 2014; 6(6):1759091414554945.10.1177/1759091414554945435760825424428
DOI: https://doi.org/10.2478/sjecr-2022-0021 | Journal eISSN: 2956-2090 | Journal ISSN: 2956-0454
Language: English
Page range: 111 - 119
Submitted on: May 28, 2022
Accepted on: May 30, 2022
Published on: Jul 11, 2022
Published by: University of Kragujevac, Faculty of Medical Sciences
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2022 Tanja Jesic Petrovic, Luiza Gadzieva, Stefani Bolevich, Israpil Alisultanovich Omarov, Marija Kartashova, Sergey Bolevich, published by University of Kragujevac, Faculty of Medical Sciences
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.