Have a personal or library account? Click to login
The Role of Galectin 3 in the Pathogenesis of Diabetes Mellitus: Focus on β-Cell Function and Survival Cover

The Role of Galectin 3 in the Pathogenesis of Diabetes Mellitus: Focus on β-Cell Function and Survival

Open Access
|Oct 2022

References

  1. Johannes L, Jacob R, Leffler H. Galectins at a glance. J Cell Sci. 2018; 131(9):jcs208884.
  2. Hirabayashi J, Kasai K-i. The family of metazoan metal-independent β-galactoside-binding lectins: structure, function and molecular evolution. Glycobiology. 1993;3:297–304.
  3. Birdsall B, Feeney J, Burdett ID, Bawumia S, Barboni EA, Hughes RC. NMR solution studies of hamster galectin-3 and electron microscopic visualization of surface-adsorbed complexes: evidence for interactions between the N-and C-terminal domains. Biochemistry. 2001;40:4859–66.
  4. Hughes RC. Mac-2: a versatile galactose-binding protein of mammalian tissues. Glycobiology. 1994;4:5–12.
  5. Wang JL, Laing JG, Anderson RL. Lectins in the cell nucleus. Glycobiology. 1991;1:243–52.
  6. Huflejt M, Turck C, Lindstedt R, Barondes S, Leffler H. L-29, a soluble lactose-binding lectin, is phosphorylated on serine 6 and serine 12 in vivo and by casein kinase I. Journal of Biological Chemistry. 1993;268:26712–8.
  7. Mazurek N, Conklin J, Byrd JC, Raz A, Bresalier RS. Phosphorylation of the β-galactoside-binding protein galectin-3 modulates binding to its ligands. Journal of Biological Chemistry. 2000;275:36311–5.
  8. Menon RP, Hughes RC. Determinants in the N-terminal domains of galectin-3 for secretion by a novel pathway circumventing the endoplasmic reticulum–Golgi complex. European journal of biochemistry. 1999;264: 569–76.
  9. Hirabayashi J, Hashidate T, Arata Y, Nishi N, Nakamura T, Hirashima M, et al. Oligosaccharide specificity of galectins: a search by frontal affinity chromatography. Biochimica et Biophysica Acta (BBA)-General Subjects. 2002;1572:232–54
  10. Collins PM, Bum-Erdene K, Yu X, Blanchard H. Galectin-3 interactions with glycosphingolipids. J Mol Biol. 2014; 426(7):1439–51
  11. Dumic J, Dabelic S, Flögel M. Galectin-3: an open-ended story. Biochimica et Biophysica Acta (BBA)-General Subjects. 2006;1760:616–35.
  12. Díaz-Alvarez L, Ortega E. The Many Roles of Galectin-3, a Multifaceted Molecule, in Innate Immune Responses against Pathogens. Mediators Inflamm. 2017; 2017:9247574
  13. Chung AW, Sieling PA, Schenk M, Teles RM, Krutzik SR, Hsu DK, Liu FT, Sarno EN, Rea TH, Stenger S, Modlin RL, Lee DJ. Galectin-3 regulates the innate immune response of human monocytes. J Infect Dis. 2013; 207(6):947–56
  14. Yang RY, Hsu DK, Liu FT. Expression of galectin-3 modulates T-cell growth and apoptosis. Proc Natl Acad Sci U S A. 1996; 93(13):6737–42. doi: 10.1073/pnas.93.13.6737
  15. Hughes RC. Secretion of the galectin family of mammalian carbohydrate-binding proteins. Biochimica et Biophysica Acta (BBA)-General Subjects. 1999;1473: 172–85.
  16. Schaffert C, Pour PM, Chaney WG. Localization of galectin-3 in normal and diseased pancreatic tissue. International journal of pancreatology. 1998; 23: 1–9.
  17. Thomas HE, McKenzie MD, Angstetra E, Campbell PD, Kay TW. Beta cell apoptosis in diabetes. Apoptosis. 2009; 14(12):1389–404.
  18. Hui H, Dotta F, Di Mario U, Perfetti R. Role of caspases in the regulation of apoptotic pancreatic islet beta-cells death. J Cell Physiol. 2004; 200(2):177–200.
  19. Wali JA, Masters SL, Thomas HE. Linking metabolic abnormalities to apoptotic pathways in Beta cells in type 2 diabetes. Cells. 2013; 2(2):266–83.
  20. Goldberg RB. Lipid disorders in diabetes. Diabetes care. 1981; 4: 561–572.
  21. Abbate SL, Brunzell JD. Pathophysiology of hyperlipidemia in diabetes mellitus. J Cardiovasc Pharmacol. 1990;16 Suppl 9:S1–7.
  22. Hirano T. Pathophysiology of Diabetic Dyslipidemia. J Atheroscler Thromb. 2018; 25(9):771–782.
  23. Nielsen TS, Jessen N, Jørgensen JO, Møller N, Lund S. Dissecting adipose tissue lipolysis: molecular regulation and implications for metabolic disease. J Mol Endocrinol. 2014; 52(3):R199–222.
  24. Santoro A, McGraw TE, Kahn BB. Insulin action in adipocytes, adipose remodeling, and systemic effects. Cell Metab. 2021; 33(4):748–757.
  25. Bjornstad P, Eckel RH. Pathogenesis of Lipid Disorders in Insulin Resistance: a Brief Review. Curr Diab Rep. 2018; 18(12):127.
  26. Goldberg RB. Lipid disorders in diabetes. Diabetes Care. 1981; 4(5):561–72.
  27. Kawasaki E. Type 1 diabetes and autoimmunity. Clinical pediatric endocrinology. 2014; 23: 99–105
  28. Chen J, Stimpson SE, Fernandez-Bueno GA, Mathews CE. Mitochondrial reactive oxygen species and type 1 diabetes. Antioxidants & redox signaling. 2018; 29(14): 1361–72.
  29. Paschou SA, Papadopoulou-Marketou N, Chrousos GP, Kanaka-Gantenbein C. On type 1 diabetes mellitus pathogenesis. Endocrine connections. 2018; 7(1):R38–46.
  30. Karlsen AE, Størling ZM, Sparre T, Larsen MR, Mahmood A, Størling J, et al. Immune-mediated β-cell destruction in vitro and in vivo—A pivotal role for galectin-3. Biochemical and biophysical research communications. 2006; 344(1):406–15.
  31. Saksida T, Nikolic I, Vujicic M, Nilsson UJ, Leffler H, Lukic ML et al. Galectin-3 deficiency protects pancreatic islet cells from cytokine-triggered apoptosis in vitro. Journal of cellular physiology. 2013; 228(7):1568–76.
  32. Mensah-Brown EP, Al Rabesi Z, Shahin A, Al Shamsi M, Arsenijevic N, Hsu DK. Targeted disruption of the galectin-3 gene results in decreased susceptibility to multiple low dose streptozotocin-induced diabetes in mice. Clinical Immunology. 2009; 130(1):83–8.
  33. Jovicic N, Petrovic I, Pejnovic N, Ljujic B, Miletic Kovacevic M et al. Transgenic Overexpression of Galectin-3 in Pancreatic β Cells Attenuates Hyperglycemia in Mice: Synergistic Antidiabetic Effect With Exogenous IL-33. Frontiers in Pharmacology. 2021;12(2799).
  34. Radosavljevic G, Volarevic V, Jovanovic I, Milovanovic M, Pejnovic N, Arsenijevic N et al. The roles of Galectin-3 in autoimmunity and tumor progression. Immunol Res. 2012; 52(1-2):100–10
  35. Sano H, Hsu DK, Apgar JR, Yu L, Sharma BB, Kuwabara I et al. Critical role of galectin-3 in phagocytosis by macrophages. The Journal of clinical investigation. 2003; 112(3):389–97.
  36. Radosavljevic GD, Pantic J, Jovanovic I, Lukic ML, Arsenijevic N. The two faces of galectin-3: roles in various pathological conditions. Serbian Journal of Experimental and Clinical Research. 2016; 17(3):187–98.).
  37. DeFronzo RA, Ferrannini E, Groop L, Henry RR, Herman WH, Holst JJ et al. Type 2 diabetes mellitus. Nature reviews Disease primers. 2015 Jul; 1(1):1–22.
  38. Li P, Liu S, Lu M, Bandyopadhyay G, Oh D, Imamura T et al. Hematopoietic-derived galectin-3 causes cellular and systemic insulin resistance. Cell. 2016; 167(4):973–84.
  39. Pejnovic NN, Pantic JM, Jovanovic IP, Radosavljevic GD, Milovanovic MZ, Nikolic IG et al. Galectin-3 deficiency accelerates high-fat diet–induced obesity and amplifies inflammation in adipose tissue and pancreatic islets. Diabetes. 2013; 62(6):1932–44.
  40. Yuan Y, Zhou J, Hu R, Zou L, Ji L, Jiang G. Piperine protects against pancreatic β-cell dysfunction by alleviating macrophage inflammation in obese mice. Life Sciences. 2021; 274:119312
  41. Weigert J, Neumeier M, Wanninger J, Bauer S, Farkas S, Scherer MN et al. Serum galectin-3 is elevated in obesity and negatively correlates with glycosylated hemoglobin in type 2 diabetes. The Journal of Clinical Endocrinology & Metabolism. 2010; 95(3):1404–11.
  42. Yilmaz H, Cakmak M, Inan O, Darcin T, Akcay A. Increased levels of galectin-3 were associated with pre-diabetes and diabetes: new risk factor? Journal of endocrinological investigation. 2015;38: 527–33
  43. Jin Q-h, Lou Y-f, LI T-l, Chen H-h, Qiang L, HE X-j. Serum galectin-3: a risk factor for vascular complications in type 2 diabetes mellitus. Chinese medical journal. 2013;12: 2109–15.
  44. Ohkura T, Fujioka Y, Nakanishi R, Shiochi H, Sumi K, Yamamoto N, et al. Low serum galectin-3 concentrations are associated with insulin resistance in patients with type 2 diabetes mellitus. Diabetology & metabolic syndrome. 2014;6: 106.
  45. Zatterale F, Longo M, Naderi J, Raciti GA, Desiderio A, Miele C et al. Chronic adipose tissue inflammation linking obesity to insulin resistance and type 2 diabetes. Frontiers in physiology. 2020; 10:1607.
  46. Pejnovic NN, Pantic JM, Jovanovic IP, Radosavljevic GD, Djukic AL, Arsenijevic NN et al. Galectin-3 is a regulator of metaflammation in adipose tissue and pancreatic islets. Adipocyte. 2013; 2(4):266–71.
  47. Petrovic I, Pejnovic N, Ljujic B, Pavlovic S, Miletic Kovacevic M, Jeftic I et al. Overexpression of galectin 3 in pancreatic β cells amplifies β-Cell apoptosis and islet inflammation in Type-2 diabetes in mice. Frontiers in endocrinology. 2020;11:30.
  48. Böni-Schnetzler M, Meier DT. Islet inflammation in type 2 diabetes. InSeminars in immunopathology 2019 Jul (Vol. 41, No. 4, pp. 501–513). Springer Berlin Heidelberg.
  49. Burguillos MA, Svensson M, Schulte T, Boza-Serrano A, Garcia-Quintanilla A, Kavanagh E et al. Microglia-secreted galectin-3 acts as a toll-like receptor 4 ligand and contributes to microglial activation. Cell reports. 2015; 10(9):1626–38.
  50. Caberoy NB, Alvarado G, Bigcas JL, Li W. Galectin-3 is a new MerTK-specific eat-me signal. J Cell Physiol. 2012; 227(2):401–7.
  51. Cucak H, Grunnet LG, Rosendahl A. Accumulation of M1-like macrophages in type 2 diabetic islets is followed by a systemic shift in macrophage polarization. J Leukoc Biol. 2014; 95(1):149–60.
  52. Hu S, Kuwabara R, Beukema M, Ferrari M, de Haan BJ, Walvoort MT et al. Low methyl-esterified pectin protects pancreatic β-cells against diabetes-induced oxidative and inflammatory stress via galectin-3. Carbohydrate Polymers. 2020; 249:116863.
  53. Ouchi N, Parker JL, Lugus JJ, Walsh K. Adipokines in inflammation and metabolic disease. Nature reviews immunology. 2011; 11(2):85–97.
  54. Maechler P, Wollheim CB. Mitochondrial function in normal and diabetic β-cells. Nature. 2001; 414: 807–812.
  55. Wiederkehr A, Wollheim CB. Impact of mitochondrial calcium on the coupling of metabolism to insulin secretion in the pancreatic β-cell. Cell calcium. 2008; 44: 64–76.
  56. Chen J, Stimpson SE, Fernandez-Bueno GA, Mathews CE. Mitochondrial reactive oxygen species and type 1 diabetes. Antioxidants & redox signaling. 2018; 29(14):1361–72.
  57. Panigrahy SK, Bhatt R, Kumar A. Reactive oxygen species: sources, consequences and targeted therapy in type 2 diabetes. Journal of drug targeting. 2017; 25: 93–101.
  58. Tajeddine N. How do reactive oxygen species and calcium trigger mitochondrial membrane permeabilisation? Biochimica et Biophysica Acta (BBA)-General Subjects. 2016; 1860: 1079–1088.
  59. Iacobini C, Menini S, Oddi G, Ricci C, Amadio L, Pricci F, et al. Galectin-3/AGE-receptor 3 knockout mice show accelerated AGE-induced glomerular injury: evidence for a protective role of galectin-3 as an AGE receptor. The FASEB journal. 2004; 18: 1773–5.
  60. Pugliese G, Pricci F, Iacobini C, Leto G, Amadio L, Barsotti P, et al. Accelerated diabetic glomerulopathy in galectin-3/AGE receptor 3 knockout mice. The FASEB Journal. 2001; 15: 2471–9.
  61. D’Hertog W, Maris M, Ferreira GB, Verdrengh E, Lage K, Hansen DA et al. Novel insights into the global proteome responses of insulin-producing INS-1E cells to different degrees of endoplasmic reticulum stress. Journal of proteome research. 2010; 9(10):5142–52.
  62. Berridge MJ. The endoplasmic reticulum: a multifunctional signaling organelle. Cell Calcium 2002;32(5–6):235–249.
  63. Worley 3rd JF, McIntyre MS, Spencer B, Mertz RJ, Roe MW, Dukes ID. Endoplasmic reticulum calcium store regulates membrane potential in mouse islet beta-cells. Journal of Biological Chemistry. 1994;269(20):14359–62.
  64. Zeeshan HM, Lee GH, Kim HR, Chae HJ. Endoplasmic reticulum stress and associated ROS. International journal of molecular sciences. 2016; 17(3):327.
  65. Bhandary B, Marahatta A, Kim HR, Chae HJ. An involvement of oxidative stress in endoplasmic reticulum stress and its associated diseases. International journal of molecular sciences. 2013; 14(1):434–56.
  66. Sabatini PV, Speckmann T, Lynn FC. Friend and foe: β-cell Ca2+ signaling and the development of diabetes. Mol Metab. 2019; 21:1–12.
  67. Rocha M, Diaz-Morales N, Rovira-Llopis S, Escribano-Lopez I, Bañuls C, Hernandez-Mijares A et al. Mitochondrial dysfunction and endoplasmic reticulum stress in diabetes. Current Pharmaceutical Design. 2016; 22(18):2640–9.
  68. Hasnain SZ, Prins JB, McGuckin MA. Oxidative and endoplasmic reticulum stress in b-cell dysfunction in diabetes. J Mol Endocrinol. 2016; 56(2):33–54.
  69. Lee JW, Kim WH, Yeo J, Jung MH. ER stress is implicated in mitochondrial dysfunction-induced apoptosis of pancreatic beta cells. Molecules and cells. 2010; 30(6):545–9.
  70. Weinberg JM. Lipotoxicity. Kidney international. 2006 Nov 1;70(9):1560–6.
  71. Oh YS, Bae GD, Baek DJ, Park EY, Jun HS. Fatty acid-induced lipotoxicity in pancreatic beta-cells during development of type 2 diabetes. Frontiers in endocrinology. 2018; 9:384.
  72. Yazıcı D, Sezer H. Insulin Resistance, Obesity and Lipotoxicity. Adv Exp Med Biol. 2017;960:277–304.
  73. Engin AB. What Is Lipotoxicity? Adv Exp Med Biol. 2017; 960:197–220.
  74. Suganami T, Tanaka M, Ogawa Y. Adipose tissue inflammation and ectopic lipid accumulation. Endocrine journal. 2012:EJ12–0271.
  75. Pugliese G, Iacobini C, Ricci C, Fantauzzi CB, Menini S. Galectin-3 in diabetic patients. Clinical Chemistry and Laboratory Medicine (CCLM). 2014; 52: 1413–23.
DOI: https://doi.org/10.2478/sjecr-2022-0008 | Journal eISSN: 2956-2090 | Journal ISSN: 2956-0454
Language: English
Page range: 93 - 99
Submitted on: Jan 3, 2022
Accepted on: Feb 16, 2022
Published on: Oct 31, 2022
Published by: University of Kragujevac, Faculty of Medical Sciences
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2022 Milos Marinkovic, Ivica Petrovic, published by University of Kragujevac, Faculty of Medical Sciences
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.