Have a personal or library account? Click to login
The Use of Newly Synthesized Composite Scaffolds for Bone Regeneration - A Review of Literature Cover

The Use of Newly Synthesized Composite Scaffolds for Bone Regeneration - A Review of Literature

Open Access
|Dec 2022

References

  1. 1. Suto M, Nemoto E, Kanaya S, Suzuki R, Tsuchiya M, Shimauchi H. Nanohydroxyapatite increases BMP-2 expression via a p38 MAP kinase dependent pathway in periodontal ligament cells. Arch Oral Biol 2013; 58(8):1021-8.10.1016/j.archoralbio.2013.02.01423518236
  2. 2. Chen Y, Xu J, Huang Z, et al. An Innovative Approach for Enhancing Bone Defect Healing Using PLGA Scaffolds Seeded with Extracorporeal-shock-wave-treated Bone Marrow Mesenchymal Stem Cells (BMSCs). Sci Rep 2017;7:44130.10.1038/srep44130534104028272494
  3. 3. Zhang B, Zhang PB, Wang ZL, Lyu ZW, Wu H. Tissueengineered composite scaffold of poly(lactide-co-glycolide) and hydroxyapatite nanoparticles seeded with autologous mesenchymal stem cells for bone regeneration. J Zhejiang Univ Sci B 2017;18(11):963-76.10.1631/jzus.B1600412569631529119734
  4. 4. Urban IA, Monje A. Guided Bone Regeneration in Alveolar Bone Reconstruction. Oral Maxillofac Surg Clin North Am 2019;31(2):331-8.10.1016/j.coms.2019.01.00330947850
  5. 5. Nikolova MP, Chavali MS. Recent advances in biomaterials for 3D scaffolds: A review. Bioact Mater 2019;4:271-92.10.1016/j.bioactmat.2019.10.005682909831709311
  6. 6. Dimitriou R, Jones E, McGonagle D, Giannoudis PV. Bone regeneration: current concepts and future directions. BMC Med 2011;9:66.10.1186/1741-7015-9-66312371421627784
  7. 7. Vieira S, Vial S, Reis RL, Oliveira JM. Nanoparticles for bone tissue engineering. Biotechnol Prog 2017; 33(3):590-611.10.1002/btpr.246928371447
  8. 8. Raeisdasteh Hokmabad V, Davaran S, Ramazani A, Salehi R. Design and fabrication of porous biodegradable scaffolds: a strategy for tissue engineering. J Biomater Sci Polym Ed 2017;28(16):1797-825.10.1080/09205063.2017.135467428707508
  9. 9. Polo-Corrales L, Latorre-Esteves M, Ramirez-Vick JE. Scaffold design for bone regeneration. J Nanosci Nanotechnol 2014;14(1):15-56.10.1166/jnn.2014.9127399717524730250
  10. 10. Huawei Q, Hongya F, Zhenyu H, Yang S. Biomaterials for bone tissue engineering scaffolds: a review. RSC Adv 2019;9:26252-62.10.1039/C9RA05214C
  11. 11. Stevens MM. Biomaterials for bone tissue engineering. Mater Today 2008;11(5):18-25.10.1016/S1369-7021(08)70086-5
  12. 12. Khan WS, Longo UG, Adesida A, Denaro V. Stem cell and tissue engineering applications in orthopaedics and musculoskeletal medicine. Stem Cells Int 2012;2012: 403170.10.1155/2012/403170332823522550506
  13. 13. Roseti L, Parisi V, Petretta M, et al. Scaffolds for Bone Tissue Engineering: State of the art and new perspectives. Mater Sci Eng C Mater Biol Appl 2017;78:1246-62.10.1016/j.msec.2017.05.01728575964
  14. 14. Gamblin AL, Brennan MA, Renaud A, et al. Bone tissue formation with human mesenchymal stem cells and biphasic calcium phosphate ceramics: the local implication of osteoclasts and macrophages. Biomaterials 2014;35(36):9660-7.10.1016/j.biomaterials.2014.08.01825176068
  15. 15. Bertolai R, Catelani C, Aversa A, Rossi A, Giannini D, Bani D. Bone graft and mesenchimal stem cells: clinical observations and histological analysis. Clin Cases Miner Bone Metab 2015;12(2):183-7.10.11138/ccmbm/2015.12.2.183462577826604947
  16. 16. Zhao R, Yang R, Cooper PR, Khurshid Z, Shavandi A, Ratnayake J. Bone Grafts and Substitutes in Dentistry: A Review of Current Trends and Developments. Molecules 2021;26(10):3007.10.3390/molecules26103007815851034070157
  17. 17. Katagiri T, Watabe T. Bone Morphogenetic Proteins. Cold Spring Harb Perspect Biol 2016;8(6):a021899.10.1101/cshperspect.a021899488882127252362
  18. 18. Cicciù, M. Growth Factor Applied to Oral and Regenerative Surgery. Int J Mol Sci 2020;21:7752.10.3390/ijms21207752758980033092073
  19. 19. Eltom A, Zhong G, Muhamad A. Scaffold Techniques and Designs in Tissue Engineering Functions and Purposes: A Review. Adv Mater Sci Eng 2019(4):1-13.10.1155/2019/3429527
  20. 20. Sharma S, Sudhakara P, Singh J, Ilyas RA, Asyraf MRM, Razman MR. Critical Review of Biodegradable and Bioactive Polymer Composites for Bone Tissue Engineering and Drug Delivery Applications. Polymers (Basel) 2021;13(16):2623.10.3390/polym13162623839991534451161
  21. 21. Qiu YL, Chen X, Hou YL, et al. Characterization of different biodegradable scaffolds in tissue engineering. Mol Med Rep 2019;19(5):4043-56.10.3892/mmr.2019.10066647181230896809
  22. 22. Stratton S, Shelke NB, Hoshino K, Rudraiah S, Kumbar SG. Bioactive polymeric scaffolds for tissue engineering. Bioact Mater 2016;1(2):93-108.10.1016/j.bioactmat.2016.11.001548254728653043
  23. 23. Amini AR, Laurencin CT, Nukavarapu SP. Bone tissue engineering: recent advances and challenges. Crit Rev Biomed Eng 2012;40(5):363-408.10.1615/CritRevBiomedEng.v40.i5.10376636923339648
  24. 24. Yuan N, Rezzadeh KS, Lee JC. Biomimetic Scaffolds for Osteogenesis. Receptors Clin Investig 2015;2(3):898.
  25. 25. Karageorgiou V, Kaplan D. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 2005; 26(27):5474-91.10.1016/j.biomaterials.2005.02.00215860204
  26. 26. Huang Y, Ren J, Ren T, et al. Bone marrow stromal cells cultured on poly (lactide-co-glycolide)/nano-hydroxyapatite composites with chemical immobilization of Arg-Gly-Asp peptide and preliminary bone regeneration of mandibular defect thereof. J Biomed Materials Res 2010;95A(4):993-1003.10.1002/jbm.a.3292220872750
  27. 27. Chau D, Agashi K, Shakesheff K. Microparticles as tissue engineering scaffolds: manufacture, modification and manipulation. Mater Sci Technol 2008; 24:1031-44.10.1179/174328408X341726
  28. 28. Thavornyutikarn B, Chantarapanich N, Sitthiseripratip K, Thouas GA, Chen Q. Bone tissue engineering scaffolding: computer-aided scaffolding techniques. Prog Biomater 2014;3:61-102.10.1007/s40204-014-0026-7470937226798575
  29. 29. Torabi K, Farjood E, Hamedani S. Rapid Prototyping technologies and their applications in prosthodontics, a review of literature. J Dent Shiraz Univ Med Sci 2015;16:1-9.
  30. 30. Kafle A, Luis E, Silwal R, Pan HM, Shrestha PL, Bastola AK. 3D/4D Printing of Polymers: Fused Deposition Modelling (FDM), Selective Laser Sintering (SLS), and Stereolithography (SLA). Polymers (Basel) 2021; 13(18):3101.10.3390/polym13183101847030134578002
  31. 31. Sah MK, Sadanand J, Pramanik K. Computational approaches in tissue engineering, Int J Comput Appl 2011;27:13-20.10.5120/3290-4484
  32. 32. Yu XH, Tang XY, Gohil SV, Laurencin CT. Adv Healthc Mater 2015;4:1268-85.10.1002/adhm.201400760
  33. 33. Ning C, Zhou L, Tan G. Fourth-generation biomedical materials. 2015;19(1):2–3.10.1016/j.mattod.2015.11.005
  34. 34. Sachot N, Mateos-Timoneda MA, Planell JA, et al. Towards 4th generation biomaterials: a covalent hybrid polymer-ormoglass architecture. Nanoscale 2015;7(37):15349-61.10.1039/C5NR04275E
  35. 35. Matassi F, Nistri L, Chicon Paez D, Innocenti M. New biomaterials for bone regeneration. Clin Cases Miner Bone Metab 2011;8(1):21-24.
  36. 36. Koons GL, Diba M, Mikos AG. Materials design for bone-tissue engineering. Nat Rev Mater 2020;5: 584-603.10.1038/s41578-020-0204-2
  37. 37. Best SM, Porter AE, Thian ES, Huang J. Bioceramics: Past, Present and for the Future. J Europ Ceram Soc 2008;28:1319-1327.10.1016/j.jeurceramsoc.2007.12.001
  38. 38. Kattimani VS, Kondaka S, Lingamaneni KP. Hydroxyapatite - Past, Present, and Future in Bone Regeneration. Bone Tissue Regen Insights 2016.10.4137/BTRI.S36138
  39. 39. Tollemar V, Collier ZJ, Mohammed MK, Lee MJ, Ameer GA, Reid RR. Stem cells, growth factors and scaffolds in craniofacial regenerative medicine. Genes Dis 2016;3(1):56-71.10.1016/j.gendis.2015.09.004488003027239485
  40. 40. Suneelkumar C, Datta K, Srinivasan MR, Kumar ST. Biphasic calcium phosphate in periapical surgery. J Conserv Dent 2008;11:92-96.10.4103/0972-0707.44059281309620142892
  41. 41. Jones JR. Review of bioactive glass: from Hench to hybrids. Acta Biomater 2013;(9):4457-86.10.1016/j.actbio.2012.08.02322922331
  42. 42. Zhao, WT, Michalik D, Ferguson S, et al. Rapid evaluation of bioactive Ti-based surfaces using an in vitro titration method. Nat Commun 2019;(10):2062.10.1038/s41467-019-09673-1649764531048680
  43. 43. Lee JW, Han HS, Han KJ, et al. Long-term clinical study and multiscale analysis of in vivo biodegradation mechanism of Mg alloy. Proc Natl Acad Sci U S A 2016;113(3):716-21.10.1073/pnas.1518238113472553926729859
  44. 44. Tavoni M, Dapporto M, Tampieri A, Sprio S. Bioactive Calcium Phosphate-Based Composites for Bone Regeneration. J Compos Sci 2021;5:227.10.3390/jcs5090227
  45. 45. Witte F, Kaese V, Haferkamp H, et al. In vivo corrosion of four magnesium alloys and the associated bone response. Biomaterials 2005;26:3557-63.10.1016/j.biomaterials.2004.09.04915621246
  46. 46. Yusop AH, Bakir AA, Shaharom NA, Abdul Kadir MR, Hermawan H. Porous biodegradable metals for hard tissue scaffolds: a review. Int J Biomater 2012;2012:641430.10.1155/2012/641430341865022919393
  47. 47. Rico-Llanos GA, Borrego-González S, Moncayo- Donoso M, Becerra J, Visser R. Collagen Type I Biomaterials as Scaffolds for Bone Tissue Engineering. Polymers (Basel) 2021;13(4):599.10.3390/polym13040599792318833671329
  48. 48. Sun J, Tan H. Alginate-Based Biomaterials for Regenerative Medicine Applications. Materials (Basel) 2013;6(4):1285-1309.10.3390/ma6041285545231628809210
  49. 49. Shi LY, Wang F, Zhu W, et al. Self-healing silk fibroinbased hydrogel for bone regeneration: dynamic metalligand self-assembly approach. Adv Funct Mater 2017;27:1700591.10.1002/adfm.201700591
  50. 50. Nisal A, Sayyad R, Dhavale P, et al. Silk fibroin microparticle scaffolds with superior compression modulus and slow bioresorption for effective bone regeneration. Sci Rep 2018;8:7235.10.1038/s41598-018-25643-x594092429740071
  51. 51. Bhattacharjee P, Kundu B, Naskar D, et al. Silk scaffolds in bone tissue engineering: An overview. Acta Biomater 2017;63:1-17.10.1016/j.actbio.2017.09.02728941652
  52. 52. Donnaloja F, Jacchetti E, Soncini M, Raimondi MT. Natural and Synthetic Polymers for Bone Scaffolds Optimization. Polymers (Basel) 2020;12(4):905.10.3390/polym12040905724070332295115
  53. 53. Ghalia MA, Dahman Y. Biodegradable Poly(Lactic Acid)-Based Scaffolds: Synthesis and Biomedical Applications. J Polym Res 2017;24:74.10.1007/s10965-017-1227-2
  54. 54. Reddy MSB, Ponnamma D, Choudhary R, Sadasivuni KK. A Comparative Review of Natural and Synthetic Biopolymer Composite Scaffolds. Polymers (Basel) 2021;13(7):1105.10.3390/polym13071105803745133808492
  55. 55. Holmes B, Bulusu K, Plesniak M, Zhang LG. A synergistic approach to the design, fabrication and evaluation of 3D printed micro and nano featured scaffolds for vascularized bone tissue repair. Nanotechnology 2016;27:064001.10.1088/0957-4484/27/6/064001505547326758780
  56. 56. Ren Z, Ma S, Jin L, et al. Repairing a bone defect with a three-dimensional cellular construct composed of a multi-layered cell sheet on electrospun mesh. Biofabrication 2017;9:025036.10.1088/1758-5090/aa747f28631613
  57. 57. Yang T, Hu Y, Wang C, Binks BP. Fabrication of Hierarchical Macroporous Biocompatible Scaffolds by Combining Pickering High Internal Phase Emulsion Templates with Three-Dimensional Printing. ACS Appl Mater Interfaces 2017; 9:22950-8.10.1021/acsami.7b0501228636315
  58. 58. Kim MS, Kim G. Three-dimensional electrospun polycaprolactone (PCL)/alginate hybrid composite scaffolds. Carbohydr Polym 2014;114:213-21.10.1016/j.carbpol.2014.08.00825263884
  59. 59. Chuenjitkuntaworn B, Inrung W, Damrongsri D, Mekaapiruk K, Supaphol P, Pavasant P. Polycaprolactone/hydroxyapatite composite scaffolds: Preparation, characterization, and in vitro and in vivo biological responses of human primary bone cells. J Biomed Mater Res Part A 2010;94:241-51.10.1002/jbm.a.3265720166220
  60. 60. Deng Y, Yang WZ, Shi D, et al. Bioinspired and osteopromotive polydopamine nanoparticle-incorporated fibrous membranes for robust bone regeneration. NPG Asia Mater 2019;11:1-13.10.1038/s41427-019-0139-5
  61. 61. Wilson JA, Luong D, Kleinfehn AP, Sallam S, Wesdemiotis C, Becker ML. Magnesium catalyzed polymerization of end functionalized poly(propylene maleate) and poly(propylene fumarate) for 3D printing of bioactive scaffolds. J Am Chem Soc 2018;140:277-84.10.1021/jacs.7b0997829236489
  62. 62. Ogueri KS, Jafari T, Escobar Ivirico JL, Laurencin CT. Polymeric biomaterials for scaffold-based bone regenerative engineering. Regen Eng Transl Med 2019; 5(2):128-54.10.1007/s40883-018-0072-0669715831423461
  63. 63. Ikada Y. Challenges in tissue engineering. J R Soc Interface 2006;3(10):589-601.10.1098/rsif.2006.0124166465516971328
  64. 64. Linhart W, Peters F, Lehmann W, et al. Biologically and chemically optimized composites of carbonated apatite and polyglycolide as bone substitution materials. J Biomed Mater Res 2001;54:162-71.10.1002/1097-4636(200102)54:2<;162::AID-JBM2>3.0.CO;2-3
  65. 65. Ju J, Peng X, Huang K, et al. High-performance porous PLLA-based scaffolds for bone tissue engineering: Preparation, characterization, and in vitro and in vivo evaluation. Polymer 2019;121707.10.1016/j.polymer.2019.121707
  66. 66. Li J, Li Y, Ma S, Gao Y, Zuo Y, Hu J. Enhancement of bone formation by BMP-7 transduced MSCs on biomimetic nano-hydroxyapatite/polyamide composite scaffolds in repair of mandibular defects. J Biomed Mater Res A, 2010;95A:973-81.10.1002/jbm.a.32926
  67. 67. Albertsson AC, Varma IK. Recent developments in ring opening polymerization of lactones for biomedical applications. Biomacromolecules 2003;4(6):1466-86.10.1021/bm034247a14606869
  68. 68. Gentile P, Chiono V, Hatton PV. An Overview of Poly ( lactic- co -glycolic ) Acid ( PLGA ) -Based Biomaterials for Bone Tissue Engineering. Int J Mol Sci 2014;15:3640-59.10.3390/ijms15033640397535924590126
  69. 69. Zhao D, Zhu T, Li J, et al. Poly(lactic-co-glycolic acid)- based composite bone-substitute materials. Bioact Mater 2020;6(2):346-60.10.1016/j.bioactmat.2020.08.016747552132954053
  70. 70. Wang DX, He Y, Bi L, et al. Enhancing the bioactivity of poly(lactic-co-glycolic acid) scaffold with a nano-hydroxyapatite coating for the treatment of segmental bone defect in a rabbit model. Int J Nanomed 2013;8:1855-65.10.2147/IJN.S43706365681823690683
  71. 71. Zhang PB, Hong Z, Yu T, Chen X, Jing X. In vivo mineralization and osteogenesis of nanocomposite scaffold of poly (lactide-co-glycolide) and hydroxyapatite surface- grafted with poly(Llactide). Biomaterials 2009; 30:58-70.10.1016/j.biomaterials.2008.08.04118838160
  72. 72. Namini MS, Bayat N, Tajerian R, et al. A comparison study on the behavior of human endometrial stem cellderived osteoblast cells on PLGA/HA nanocomposite scaffolds fabricated by electrospinning and freeze-drying methods. J Orthop Surg Res 2018;13:63.10.1186/s13018-018-0754-9587017529587806
  73. 73. Park JW, Hwang JU, Back JH. High strength PLGA/hydroxyapatite composites with tunable surface structure using PLGA direct grafting method for orthopedic implants. Compos B Eng 2019;178:107449.10.1016/j.compositesb.2019.107449
  74. 74. Fisher PD, Venugopal G, Milbrandt TA, Hilt JZ, Puleo DA. Hydroxyapatite-reinforced in situ forming PLGA systems for intraosseous injection. J Biomed Mater Res Part A 2015;103:2365-73.10.1002/jbm.a.3537525424622
  75. 75. Fu C, Bai H, Zhu J, Niu Z, Bai Y. Enhanced cell proliferation and osteogenic differentiation in electrospun PLGA/hydroxyapatite nanofibre scaffolds incorporated with graphene oxide. PLoS ONE 2017;12:e18835210.1371/journal.pone.0188352570673229186202
  76. 76. Huang Y, Ren J, Ren T, et al. Bone marrow stromal cells cultured on poly (lactide-co-glycolide)/nano-hydroxyapatite composites with chemical immobilization of Arg-Gly-Asp peptide and preliminary bone regeneration of mandibular defect thereof. J Biomed Mater Res Part A 2010;95A(4):993–1003.10.1002/jbm.a.3292220872750
  77. 77. Zou Y, Li D, Shen M, Shi X. Polyethylenimine-Based Nanogels for Biomedical Applications. Macromol Biosci 2019;1900272.10.1002/mabi.20190027231531955
  78. 78. Ratanajanchai M, Soodvilai S, Pimpha N, Sunintaboon P. Polyethylenimine-immobilized core-shell nanoparticles: synthesis, characterization, and biocompatibility test. Mater Sci Eng C Mater Biol Appl 2014;34:377-83.10.1016/j.msec.2013.09.03724268272
  79. 79. Vicennati P, Giuliano A, Ortaggi G, Masotti A. Polyethylenimine In Medicinal Chemistry. Curr Med Chem 2008;15(27):2826-39.10.2174/09298670878624277818991638
  80. 80. Wen Y, Pan S, Luo X, Zhang W, Shen Y, Feng M. PEGand PDMAEG-graft-modified branched PEI as novel gene vector: synthesis, characterization and gene transfection. J Biomater Sci Polym Ed 2010;21(8-9):1103-26.10.1163/092050609X1245929575031620507711
  81. 81. Simionescu BC, Drobota M, Timpu D, Vasiliu T, Constantinescu CA, Rebleanu D, Calin M, David G. Biopolymers/poly(ε-caprolactone)/polyethylenimine functionalized nano-hydroxyapatite hybrid cryogel: Synthesis, characterization and application in gene delivery. Mater Sci Eng C Mater Biol Appl. 2017;81:167-176.10.1016/j.msec.2017.07.03128887961
  82. 82. Shiels SM, Solomon KD, Pilia M, Appleford MR., Ong JL. BMP-2 tethered hydroxyapatite for bone tissue regeneration: Coating chemistry and osteoblast attachment. J Biomed Mater Res A 2012;100A(11):3117-23.10.1002/jbm.a.3424122815074
  83. 83. Chen Z, Lv Z, Sun Y, Chi Z, Qing G. Recent advancements in polyethyleneimine-based materials and their biomedical, biotechnology, and biomaterial applications. J Mater Chem B 2020.10.1039/C9TB02271F32159205
DOI: https://doi.org/10.2478/sjecr-2021-0071 | Journal eISSN: 2956-2090 | Journal ISSN: 2956-0454
Language: English
Submitted on: Nov 25, 2021
Accepted on: Dec 10, 2021
Published on: Dec 31, 2022
Published by: University of Kragujevac, Faculty of Medical Sciences
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2022 Momir Stevanovic, Sanja Vujovic, Dragana Stanisic, Jana Desnica, Irena Ognjanovic, published by University of Kragujevac, Faculty of Medical Sciences
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

AHEAD OF PRINT