Have a personal or library account? Click to login
Host Defense Peptides in Brief Cover
By: Suzana Popovic  
Open Access
|Aug 2025

References

  1. Skarnes RC, Watson DWJBr. Antimicrobial factors of normal tissues and fluids. Bacteriol Rev 1957;21(4):273.
  2. Hirsch JGJTJoem. Phagocytin: a bactericidal substance from polymorphonuclear leucocytes. J Expt Med 1956;103(5):589.
  3. Zeya H, Spitznagel JK. Cationic proteins of polymorphonuclear leukocyte lysosomes I. resolution of antibacterial and enzymatic activities. J Bacteriol 1966;91(2):750–4.
  4. Zeya H, Spitznagel JK. Cationic proteins of polymorphonuclear leukocyte lysosomes II. Composition, properties, and mechanism of antibacterial action. J Bacteriol 1966;91(2):755–62.
  5. Zasloff M. Magainins, a class of antimicrobial peptides from Xenopus skin: Isolation, characterization of two active forms, and partial cDNA sequence of a precursor. Proc Natl Acad Sci USA 1988;23(2–3):360.
  6. Riley MA, Gordon DM. The ecological role of bacteriocins in bacterial competition. Trends Microbiol 1999;7(3):129–33.
  7. Brandenburg L-O, Merres J, Albrecht L-J, Varoga D, Pufe T. Antimicrobial peptides: multifunctional drugs for different applications. Polymers 2012;4(1):539–60.
  8. De Smet K, Contreras R. Human antimicrobial peptides: defensins, cathelicidins and histatins. Biotechnol Lett 2005;27(18):1337–47.
  9. Yeaman MR, Yount NY. Mechanisms of antimicrobial peptide action and resistance. Pharmacol Rev 2003;55(1):27–55.
  10. Patrzykat A, Friedrich CL, Zhang L, Mendoza V, Hancock RE. Sublethal concentrations of pleurocidin-derived antimicrobial peptides inhibit macromolecular synthesis in Escherichia coli. Antimicrob Agents Chemother 2002;46(3):605–14.
  11. Krizsan A, Volke D, Weinert S, Sträter N, Knappe D, Hoffmann R. Insect-derived proline-rich antimicrobial peptides kill bacteria by inhibiting bacterial protein translation at the 70 S ribosome. Angew Chem Int Ed Engl 2014;53(45):12236–9.
  12. Ginsburg I. Bactericidal cationic peptides can also function as bacteriolysis-inducing agents mimicking beta-lactam antibiotics?; it is enigmatic why this concept is consistently disregarded. Med Hypotheses 2004;62(3):367–74.
  13. Aboudy Y, Mendelson E, Shalit I, Bessalle R, Fridkin M. Activity of two synthetic amphiphilic peptides and magainin-2 against herpes simplex virus types 1 and 2. Int J Pept Protein Res 1994;43(6):573–82.
  14. Belaid A, Aouni M, Khelifa R, Trabelsi A, Jemmali M, Hani K. In vitro antiviral activity of dermaseptins against herpes simplex virus type 1. J Med Virol 2002;66(2):229–34.
  15. Wachinger M, Kleinschmidt A, Winder D, von Pechmann N, Ludvigsen A, Neumann M, et al. Antimicrobial peptides melittin and cecropin inhibit replication of human immunodeficiency virus 1 by suppressing viral gene expression. J Gen Virol 1998;79 (Pt 4):731–40.
  16. Barlow PG, Svoboda P, Mackellar A, Nash AA, York IA, Pohl J, et al. Antiviral Activity and Increased Host Defense against Influenza Infection Elicited by the Human Cathelicidin LL-37. PLOS ONE 2011;6(10):e25333.
  17. Buck CB, Day PM, Thompson CD, Lubkowski J, Lu W, Lowy DR, et al. Human alpha-defensins block papillomavirus infection. Proc Natl Acad Sci U S A 2006;103(5):1516–21.
  18. Daher KA, Selsted ME, Lehrer RI. Direct inactivation of viruses by human granulocyte defensins. J Virol 1986;60(3):1068–74.
  19. Sinha S, Cheshenko N, Lehrer RI, Herold BC. NP-1, a rabbit alpha-defensin, prevents the entry and intercellular spread of herpes simplex virus type 2. Antimicrob Agents Chemother 2003;47(2):494–500.
  20. Chang TL, Vargas J, Jr., DelPortillo A, Klotman ME. Dual role of alpha-defensin-1 in anti-HIV-1 innate immunity. J Clin Invest 2005;115(3):765–73.
  21. Bergman P, Walter-Jallow L, Broliden K, Agerberth B, Söderlund J. The antimicrobial peptide LL-37 inhibits HIV-1 replication. Curr HIV Res 2007;5(4):410–5.
  22. Liang QL, Zhou K, He HX. Retrocyclin 2: a new therapy against avian influenza H5N1 virus in vivo and vitro. Biotechnol Lett 2010;32(3):387–92.
  23. Durnaś B, Wnorowska U, Pogoda K, Deptuła P, Wątek M, Piktel E, et al. Candidacidal Activity of Selected Ceragenins and Human Cathelicidin LL-37 in Experimental Settings Mimicking Infection Sites. PLOS ONE 2016;11(6):e0157242.
  24. De Lucca AJ, Bland JM, Jacks TJ, Grimm C, Walsh TJ. Fungicidal and binding properties of the natural peptides cecropin B and dermaseptin. Medical Mycology 1998;36(5):291–8.
  25. Mangoni ML, Grovale N, Giorgi A, Mignogna G, Simmaco M, Barra D. Structure-function relationships in bombinins H, antimicrobial peptides from Bombina skin secretions. Peptides 2000;21(11):1673–9.
  26. Mangoni ML, Marcellini HG, Simmaco M. Biological characterization and modes of action of temporins and bombinins H, multiple forms of short and mildly cationic anti-microbial peptides from amphibian skin. J Pept Sci 2007;13(9):603–13.
  27. Giacometti A, Cirioni O, Barchiesi F, Del Prete MS, Scalise G. Antimicrobial activity of polycationic peptides. Peptides 1999;20(11):1265–73.
  28. Schmatz DM, Romancheck MA, Pittarelli LA, Schwartz RE, Fromtling RA, Nollstadt KH, et al. Treatment of Pneumocystis carinii pneumonia with 1,3-beta-glucan synthesis inhibitors. Proceedings of the National Academy of Sciences of the United States of America 1990;87(15):5950–4.
  29. Kurtz MB, Douglas CM. Lipopeptide inhibitors of fungal glucan synthase. J Med Vet Mycol 1997;35(2):79–86.
  30. Hector RF, Zimmer BL, Pappagianis D. Evaluation of nikkomycins X and Z in murine models of coccidioidomycosis, histoplasmosis, and blastomycosis. Antimicrob Agents Chemother 1990;34(4):587–93.
  31. Clemons KV, Stevens DA. Efficacy of nikkomycin Z against experimental pulmonary blastomycosis. Antimicrob Agents Chemother 1997;41(9):2026–8.
  32. Nagiec MM, Nagiec EE, Baltisberger JA, Wells GB, Lester RL, Dickson RC. Sphingolipid synthesis as a target for antifungal drugs. Complementation of the inositol phosphorylceramide synthase defect in a mutant strain of Saccharomyces cerevisiae by the AUR1 gene. J Biol Chem 1997;272(15):9809–17.
  33. Takesako K, Kuroda H, Inoue T, Haruna F, Yoshikawa Y, Kato I, et al. Biological properties of aureobasidin A, a cyclic depsipeptide antifungal antibiotic. J Antibiot (Tokyo) 1993;46(9):1414–20.
  34. Fehlbaum P, Bulet P, Michaut L, Lagueux M, Broekaert WF, Hetru C, et al. Insect immunity. Septic injury of Drosophila induces the synthesis of a potent antifungal peptide with sequence homology to plant antifungal peptides. J Biol Chem 1994;269(52):33159–63.
  35. Thevissen K, Kristensen HH, Thomma BP, Cammue BP, François IE. Therapeutic potential of antifungal plant and insect defensins. Drug Discov Today 2007;12(21–22):966–71.
  36. Santarpia RP, 3rd, Pollock JJ, Renner RP, Gwinnett AJ. In vivo antifungal efficacy of salivary histidine-rich polypeptides: preliminary findings in a denture stomatitis model system. J Prosthet Dent 1991;66(5):693–9.
  37. Pollock JJ, Denepitiya L, MacKay BJ, Iacono VJ. Fungistatic and fungicidal activity of human parotid salivary histidine-rich polypeptides on Candida albicans. Infect Immun 1984;44(3):702–7.
  38. Rayhan R, Xu L, Santarpia RP, 3rd, Tylenda CA, Pollock JJ. Antifungal activities of salivary histidine-rich polypeptides against Candida albicans and other oral yeast isolates. Oral Microbiol Immunol 1992;7(1):51–2.
  39. Helmerhorst EJ, Reijnders IM, van't Hof W, Simoons-Smit I, Veerman EC, Amerongen AV. Amphotericin B- and fluconazole-resistant Candida spp., Aspergillus fumigatus, and other newly emerging pathogenic fungi are susceptible to basic antifungal peptides. Antimicrob Agents Chemother 1999;43(3):702–4.
  40. Tsai H, Bobek LA. Human salivary histatin-5 exerts potent fungicidal activity against Cryptococcus neoformans. Biochim Biophys Acta 1997;1336(3):367–9.
  41. Helmerhorst EJ, van't Hof W, Breeuwer P, Veerman EC, Abee T, Troxler RF, et al. Characterization of histatin 5 with respect to amphipathicity, hydrophobicity, and effects on cell and mitochondrial membrane integrity excludes a candidacidal mechanism of pore formation. J Biol Chem 2001;276(8):5643–9.
  42. Gelhaus C, Jacobs T, Andrä J, Leippe M. The antimicrobial peptide NK-2, the core region of mammalian NK-lysin, kills intraerythrocytic Plasmodium falciparum. Antimicrob Agents Chemother 2008;52(5):1713–20.
  43. Jacobs T, Bruhn H, Gaworski I, Fleischer B, Leippe M. NK-Lysin and Its Shortened Analog NK-2 Exhibit Potent Activities against Trypanosoma cruzi. Antimicrob Agents Chemother 2003;47:607–13.
  44. Gwadz RW, Kaslow D, Lee JY, Maloy WL, Zasloff M, Miller LH. Effects of magainins and cecropins on the sporogonic development of malaria parasites in mosquitoes. Infect Immun 1989;57(9):2628–33.
  45. Aguilar-Diaz H, Canizalez-Roman A, Nepomuceno-Mejia T, Gallardo-Vera F, Hornelas-Orozco Y, Nazmi K, et al. Parasiticidal effect of synthetic bovine lactoferrin peptides on the enteric parasite Giardia intestinalis. Biochem Cell Biol 2017;95(1):82–90.
  46. Ericksen B, Wu Z, Lu W, Lehrer RI. Antibacterial activity and specificity of the six human {alpha}-defensins. Antimicrob Agents Chemother 2005;49(1):269–75.
  47. Ellison RT, 3rd, Giehl TJ. Killing of gram-negative bacteria by lactoferrin and lysozyme. J Clin Invest 1991;88(4):1080–91.
  48. Guo Y, Xun M, Han J. A bovine myeloid antimicrobial peptide (BMAP-28) and its analogs kill pan-drug-resistant Acinetobacter baumannii by interacting with outer membrane protein A (OmpA). Medicine (Baltimore) 2018;97(42):e12832.
  49. Poirel L, Jayol A, Nordmann P. Polymyxins: Antibacterial Activity, Susceptibility Testing, and Resistance Mechanisms Encoded by Plasmids or Chromosomes. Clin Microbiol Rev 2017;30(2):557–96.
  50. Beringer PM, Bensman TJ, Ho H, Agnello M, Denovel N, Nguyen A, et al. Rhesus θ-defensin-1 (RTD-1) exhibits in vitro and in vivo activity against cystic fibrosis strains of Pseudomonas aeruginosa. J Antimicrob Chemother 2016;71(1):181–8.
  51. Brötz H, Bierbaum G, Leopold K, Reynolds PE, Sahl HG. The lantibiotic mersacidin inhibits peptidoglycan synthesis by targeting lipid II. Antimicrob Agents Chemother 1998;42(1):154–60.
  52. Chitnis SN, Prasad KS. Seminalplasmin, an antimicrobial protein from bovine seminal plasma, inhibits peptidoglycan synthesis in Escherichia coli. FEMS Microbiol Lett 1990;60(3):281–4.
  53. Furci L, Baldan R, Bianchini V, Trovato A, Ossi C, Cichero P, et al. New role for human α-defensin 5 in the fight against hypervirulent Clostridium difficile strains. Infect Immun 2015;83(3):986–95.
  54. Maisetta G, Batoni G, Esin S, Florio W, Bottai D, Favilli F, et al. In vitro bactericidal activity of human beta-defensin 3 against multidrug-resistant nosocomial strains. Antimicrob Agents Chemother 2006;50(2):806–9.
  55. Xiong YQ, Bayer AS, Yeaman MR. Inhibition of intracellular macromolecular synthesis in Staphylococcus aureus by thrombin-induced platelet microbicidal proteins. J Infect Dis 2002;185(3):348–56.
  56. Wilmes M, Stockem M, Bierbaum G, Schlag M, Götz F, Tran DQ, et al. Killing of staphylococci by θ-defensins involves membrane impairment and activation of autolytic enzymes. Antibiotics (Basel) 2014;3(4):617–31.
  57. Furci L, Tolazzi M, Sironi F, Vassena L, Lusso P. Inhibition of HIV-1 infection by human α-defensin-5, a natural antimicrobial peptide expressed in the genital and intestinal mucosae. PLoS One 2012;7(9):e45208.
  58. Quiñones-Mateu ME, Lederman MM, Feng Z, Chakraborty B, Weber J, Rangel HR, et al. Human epithelial beta-defensins 2 and 3 inhibit HIV-1 replication. Aids 2003;17(16):F39–48.
  59. Seidel A, Ye Y, de Armas LR, Soto M, Yarosh W, Marcsisin RA, et al. Cyclic and acyclic defensins inhibit human immunodeficiency virus type-1 replication by different mechanisms. PLoS One 2010;5(3):e9737.
  60. Hazrati E, Galen B, Lu W, Wang W, Ouyang Y, Keller MJ, et al. Human alpha- and beta-defensins block multiple steps in herpes simplex virus infection. J Immunol 2006;177(12):8658–66.
  61. Endo M, Takesako K, Kato I, Yamaguchi H. Fungicidal action of aureobasidin A, a cyclic depsipeptide antifungal antibiotic, against Saccharomyces cerevisiae. Antimicrob Agents Chemother 1997;41(3):672–6.
  62. Aerts AM, François IE, Meert EM, Li QT, Cammue BP, Thevissen K. The antifungal activity of RsAFP2, a plant defensin from raphanus sativus, involves the induction of reactive oxygen species in Candida albicans. J Mol Microbiol Biotechnol 2007;13(4):243–7.
  63. Aerts AM, Bammens L, Govaert G, Carmona-Gutierrez D, Madeo F, Cammue BP, et al. The Antifungal Plant Defensin HsAFP1 from Heuchera sanguinea Induces Apoptosis in Candida albicans. Front Microbiol. 2011;2:47.
  64. Aerts AM, François IE, Bammens L, Cammue BP, Smets B, Winderickx J, et al. Level of M(IP)2C sphingolipid affects plant defensin sensitivity, oxidative stress resistance and chronological life-span in yeast. FEBS Lett 2006;580(7):1903–7.
  65. Thevissen K, Ghazi A, De Samblanx GW, Brownlee C, Osborn RW, Broekaert WF. Fungal membrane responses induced by plant defensins and thionins. J Biol Chem 1996;271(25):15018–25.
  66. Lobo DS, Pereira IB, Fragel-Madeira L, Medeiros LN, Cabral LM, Faria J, et al. Antifungal Pisum sativum defensin 1 interacts with Neurospora crassa cyclin F related to the cell cycle. Biochemistry 2007;46(4):987–96.
  67. Hancock RE, Diamond G. The role of cationic antimicrobial peptides in innate host defences. Trends Microbiol 2000;8(9):402–10.
  68. Beisswenger C, Bals R. Functions of antimicrobial peptides in host defense and immunity. Curr Protein Pept Sci 2005;6(3):255–64.
  69. Zanetti M. Cathelicidins, multifunctional peptides of the innate immunity. J Leukoc Biol. 2004;75(1):39–48.
  70. Sørensen OE, Cowland JB, Theilgaard-Mönch K, Liu L, Ganz T, Borregaard N. Wound healing and expression of antimicrobial peptides/polypeptides in human keratinocytes, a consequence of common growth factors. J Immunol 2003;170(11):5583–9.
  71. Yang B, Suwanpradid J, Sanchez-Lagunes R, Choi HW, Hoang P, Wang D, et al. IL-27 Facilitates Skin Wound Healing through Induction of Epidermal Proliferation and Host Defense. J Invest Dermatol. 2017;137(5):1166–75.
  72. Grigat J, Soruri A, Forssmann U, Riggert J, Zwirner J. Chemoattraction of Macrophages, T Lymphocytes, and Mast Cells Is Evolutionarily Conserved within the Human α-Defensin Family. J Immunol 2007;179(6):3958–65.
  73. Toyoguchi T, Ebihara M, Ojima F, Hosoya J, Shoji T, Nakagawa Y. Histamine release induced by antimicrobial agents and effects of antimicrobial agents on vancomycin-induced histamine release from rat peritoneal mast cells. J Pharm Pharmacol 2000;52(3):327–31.
  74. Befus AD, Mowat C, Gilchrist M, Hu J, Solomon S, Bateman A. Neutrophil defensins induce histamine secretion from mast cells: mechanisms of action. J Immunol 1999;163(2):947–53.
  75. Zughaier SM, Shafer WM, Stephens DS. Antimicrobial peptides and endotoxin inhibit cytokine and nitric oxide release but amplify respiratory burst response in human and murine macrophages. Cell Microbiol 2005;7(9):1251–62.
  76. Ammar B, Périanin A, Mor A, Sarfati G, Tissot M, Nicolas P, et al. Dermaseptin, a peptide antibiotic, stimulates microbicidal activities of polymorphonuclear leukocytes. Biochem Biophys Res Commun 1998;247(3):870–5.
  77. Xie H, Wei J, Qin Q. Antiviral function of Tachyplesin I against iridovirus and nodavirus. Fish Shellfish Immunol 2016;58:96–102.
  78. Lillard J, Boyaka P, Chertov O, Oppenheim J, McGhee J. Mechanisms for induction of aquired host immunity by neutrophil peptide defensins. Proceedings of the National Academy of Sciences of the United States of America 1999;96:651–6.
  79. Hancock RE, Scott MG. The role of antimicrobial peptides in animal defenses. Proc Natl Acad Sci U S A 2000;97(16):8856–61.
  80. Giuliani A, Pirri G, Rinaldi AC. Antimicrobial peptides: the LPS connection. Methods Mol Biol 2010;618:137–54.
  81. Scott MG, Davidson DJ, Gold MR, Bowdish D, Hancock RE. The human antimicrobial peptide LL-37 is a multifunctional modulator of innate immune responses. J Immunol 2002;169(7):3883–91.
  82. Popovic S, Djurdjevic P, Zaric M, Mijailovic Z, Avramovic D, Baskic DJPb. Effects of host defense peptides B2RP, Brevinin-2GU, D-Lys-Temporin, Lys-XT-7 and D-Lys-Ascaphin-8 on peripheral blood mononuclear cells: Preliminary study. Periodicum Biologorum 2017;119(2).
  83. Mookherjee N, Brown KL, Bowdish DM, Doria S, Falsafi R, Hokamp K, et al. Modulation of the TLR-mediated inflammatory response by the endogenous human host defense peptide LL-37. J Immunol 2006;176(4):2455–64.
  84. Davidson DJ, Currie AJ, Reid GS, Bowdish DM, MacDonald KL, Ma RC, et al. The cationic antimicrobial peptide LL-37 modulates dendritic cell differentiation and dendritic cell-induced T cell polarization. J Immunol 2004;172(2):1146–56.
  85. Kandler K, Shaykhiev R, Kleemann P, Klescz F, Lohoff M, Vogelmeier C, et al. The anti-microbial peptide LL-37 inhibits the activation of dendritic cells by TLR ligands. Int Immunol 2006;18(12):1729–36.
  86. Brogden KA, Heidari M, Sacco RE, Palmquist D, Guthmiller JM, Johnson GK, et al. Defensin-induced adaptive immunity in mice and its potential in preventing periodontal disease. Oral Microbiol Immunol 2003;18(2):95–9.
  87. Tani K, Murphy WJ, Chertov O, Salcedo R, Koh CY, Utsunomiya I, et al. Defensins act as potent adjuvants that promote cellular and humoral immune responses in mice to a lymphoma idiotype and carrier antigens. Int Immunol 2000;12(5):691–700.
  88. Mader JS, Hoskin DW. Cationic antimicrobial peptides as novel cytotoxic agents for cancer treatment. Expert Opin Investig Drugs 2006;15(8):933–46.
  89. Risso A, Zanetti M, Gennaro R. Cytotoxicity and apoptosis mediated by two peptides of innate immunity. Cell Immunol 1998;189(2):107–15.
  90. Ye JS, Zheng XJ, Leung KW, Chen HM, Sheu FS. Induction of transient ion channel-like pores in a cancer cell by antibiotic peptide. J Biochem 2004;136(2):255–9.
  91. Chen HM, Wang W, Smith D, Chan SC. Effects of the anti-bacterial peptide cecropin B and its analogs, cecropins B-1 and B-2, on liposomes, bacteria, and cancer cells. Biochim Biophys Acta 1997;1336(2):171–9.
  92. Okumura K, Itoh A, Isogai E, Hirose K, Hosokawa Y, Abiko Y, et al. C-terminal domain of human CAP18 antimicrobial peptide induces apoptosis in oral squamous cell carcinoma SAS-H1 cells. Cancer Lett 2004;212(2):185–94.
  93. Doyle J, Brinkworth CS, Wegener KL, Carver JA, Llewellyn LE, Olver IN, et al. nNOS inhibition, antimicrobial and anticancer activity of the amphibian skin peptide, citropin 1.1 and synthetic modifications. The solution structure of a modified citropin 1.1. Eur J Biochem 2003;270(6):1141–53.
  94. Kim S, Kim SS, Bang YJ, Kim SJ, Lee BJ. In vitro activities of native and designed peptide antibiotics against drug sensitive and resistant tumor cell lines. Peptides 2003;24(7):945–53.
  95. Lehmann J, Retz M, Sidhu SS, Suttmann H, Sell M, Paulsen F, et al. Antitumor activity of the antimicrobial peptide magainin II against bladder cancer cell lines. Eur Urol 2006;50(1):141–7.
  96. Chen YQ, Min C, Sang M, Han YY, Ma X, Xue XQ, et al. A cationic amphiphilic peptide ABP-CM4 exhibits selective cytotoxicity against leukemia cells. Peptides 2010;31(8):1504–10.
  97. Riedl S, Rinner B, Asslaber M, Schaider H, Walzer S, Novak A, et al. In search of a novel target - phosphatidylserine exposed by non-apoptotic tumor cells and metastases of malignancies with poor treatment efficacy. Biochim Biophys Acta 2011;1808(11):2638–45.
  98. Zachowski A. Phospholipids in animal eukaryotic membranes: transverse asymmetry and movement. Biochem J 1993;294 (Pt 1)(Pt 1):1–14.
  99. Risso A, Braidot E, Sordano MC, Vianello A, Macrì F, Skerlavaj B, et al. BMAP-28, an antibiotic peptide of innate immunity, induces cell death through opening of the mitochondrial permeability transition pore. Mol Cell Biol 2002;22(6):1926–35.
  100. Berge G, Eliassen LT, Camilio KA, Bartnes K, Sveinbjørnsson B, Rekdal O. Therapeutic vaccination against a murine lymphoma by intratumoral injection of a cationic anticancer peptide. Cancer Immunol Immunother 2010;59(8):1285–94.
  101. Oršolić N, Josipović P, Bašić IJEJoNT. Direct antitumor activity of honey bee venom in vivo and in vitro. Egyptian Journal of Natural Toxins 2009;6(1):1–15.
  102. Wu SP, Huang TC, Lin CC, Hui CF, Lin CH, Chen JY. Pardaxin, a fish antimicrobial peptide, exhibits antitumor activity toward murine fibrosarcoma in vitro and in vivo. Mar Drugs 2012;10(8):1852–72.
  103. Azevedo RA, Ferreira AK, Auada AVV, Pasqualoto KFM, Marques-Porto R, Maria DA, et al. Antitumor effect of cationic INKKI peptide from bovine β-casein on melanoma B16F10. J Canc Ther 2012.
  104. Chen YL, Li JH, Yu CY, Lin CJ, Chiu PH, Chen PW, et al. Novel cationic antimicrobial peptide GW-H1 induced caspase-dependent apoptosis of hepatocellular carcinoma cell lines. Peptides 2012;36(2):257–65.
  105. Rodrigues EG, Dobroff AS, Cavarsan CF, Paschoalin T, Nimrichter L, Mortara RA, et al. Effective topical treatment of subcutaneous murine B16F10-Nex2 melanoma by the antimicrobial peptide gomesin. Neoplasia 2008;10(1):61–8.
  106. Hilchie AL, Doucette CD, Pinto DM, Patrzykat A, Douglas S, Hoskin DW. Pleurocidin-family cationic antimicrobial peptides are cytolytic for breast carcinoma cells and prevent growth of tumor xenografts. Breast Cancer Res 2011;13(5):R102.
  107. Liu S, Yang H, Wan L, Cai HW, Li SF, Li YP, et al. Enhancement of cytotoxicity of antimicrobial peptide magainin II in tumor cells by bombesin-targeted delivery. Acta Pharmacol Sin 2011;32(1):79–88.
  108. Winder D, Günzburg WH, Erfle V, Salmons B. Expression of antimicrobial peptides has an antitumour effect in human cells. Biochem Biophys Res Commun 1998;242(3):608–12.
  109. Russell PJ, Hewish D, Carter T, Sterling-Levis K, Ow K, Hattarki M, et al. Cytotoxic properties of immunoconjugates containing melittin-like peptide 101 against prostate cancer: in vitro and in vivo studies. Cancer Immunol Immunother 2004;53(5):411–21.
  110. Hui L, Leung K, Chen HM. The combined effects of antibacterial peptide cecropin A and anti-cancer agents on leukemia cells. Anticancer Res 2002;22(5):2811–6.
  111. Johnstone SA, Gelmon K, Mayer LD, Hancock RE, Bally MB. In vitro characterization of the anticancer activity of membrane-active cationic peptides. I. Peptidemediated cytotoxicity and peptide-enhanced cytotoxic activity of doxorubicin against wild-type and p-glycoprotein over-expressing tumor cell lines. Anticancer Drug Des 2000;15(2):151–60.
  112. Piotrowska U, Sobczak M, Oledzka E. Current state of a dual behaviour of antimicrobial peptides-Therapeutic agents and promising delivery vectors. Chem Biol Drug Des 2017;90(6):1079–93.
  113. Fjell CD, Hiss JA, Hancock RE, Schneider G. Designing antimicrobial peptides: form follows function. Nat Rev Drug Discov 2011;11(1):37–51.
  114. Meiller TF, Hube B, Schild L, Shirtliff ME, Scheper MA, Winkler R, et al. A novel immune evasion strategy of candida albicans: proteolytic cleavage of a salivary antimicrobial peptide. PLoS One 2009;4(4):e5039.
  115. Roy H, Dare K, Ibba M. Adaptation of the bacterial membrane to changing environments using aminoacylated phospholipids. Mol Microbiol 2009;71(3):547–50.
  116. Giménez D, Andreu C, del Olmo M, Varea T, Diaz D, Asensio G. The introduction of fluorine atoms or trifluoromethyl groups in short cationic peptides enhances their antimicrobial activity. Bioorg Med Chem 2006;14(20):6971–8.
  117. Papo N, Shai Y. New lytic peptides based on the D,L-amphipathic helix motif preferentially kill tumor cells compared to normal cells. Biochemistry 2003;42(31):9346–54.
  118. Svenson J, Stensen W, Brandsdal BO, Haug BE, Monrad J, Svendsen JS. Antimicrobial peptides with stability toward tryptic degradation. Biochemistry 2008;47(12):3777–88.
  119. Knappe D, Henklein P, Hoffmann R, Hilpert K. Easy strategy to protect antimicrobial peptides from fast degradation in serum. Antimicrob Agents Chemother 2010;54(9):4003–5.
  120. Arias M, Hilchie AL, Haney EF, Bolscher JG, Hyndman ME, Hancock RE, et al. Anticancer activities of bovine and human lactoferricin-derived peptides. Biochem Cell Biol 2017;95(1):91–8.
  121. Ghosh C, Manjunath GB, Akkapeddi P, Yarlagadda V, Hoque J, Uppu DS, et al. Small molecular antibacterial peptoid mimics: the simpler the better! J Med Chem 2014;57(4):1428–36.
  122. Wang Y, Yang YJ, Chen YN, Zhao HY, Zhang S. Computer-aided design, structural dynamics analysis, and in vitro susceptibility test of antibacterial peptides incorporating unnatural amino acids against microbial infections. Comput Methods Programs Biomed 2016;134:215–23.
  123. de la Fuente-Núñez C, Reffuveille F, Haney EF, Straus SK, Hancock RE. Broad-spectrum anti-biofilm peptide that targets a cellular stress response. PLoS Pathog 2014;10(5):e1004152.
  124. Lohan S, Cameotra SS, Bisht GS. Systematic study of non-natural short cationic lipopeptides as novel broad-spectrum antimicrobial agents. Chem Biol Drug Des 2013;82(5):557–66.
  125. de Breij A, Riool M, Kwakman PH, de Boer L, Cordfunke RA, Drijfhout JW, et al. Prevention of Staphylococcus aureus biomaterial-associated infections using a polymer-lipid coating containing the antimicrobial peptide OP-145. J Control Release 2016;222:1–8.
  126. McGee DC, Gould MK. Preventing complications of central venous catheterization. N Engl J Med 2003;348(12):1123–33.
  127. Rijsbergen M, Rijneveld R, Todd M, Feiss GL, Kouwenhoven STP, Quint KD, et al. Results of phase 2 trials exploring the safety and efficacy of omiganan in patients with human papillomavirus-induced genital lesions. Br J Clin Pharmacol 2020;86(11):2133–43.
  128. Lipsky BA, Holroyd KJ, Zasloff M. Topical versus systemic antimicrobial therapy for treating mildly infected diabetic foot ulcers: a randomized, controlled, double-blinded, multicenter trial of pexiganan cream. Clin Infect Dis 2008;47(12):1537–45.
  129. Cheng KT, Wu CL, Yip BS, Chih YH, Peng KL, Hsu SY, et al. The Interactions between the Antimicrobial Peptide P-113 and Living Candida albicans Cells Shed Light on Mechanisms of Antifungal Activity and Resistance. Int J Mol Sci 2020;21(7).
  130. van der Does AM, Bogaards SJ, Ravensbergen B, Beekhuizen H, van Dissel JT, Nibbering PH. Antimicrobial peptide hLF1-11 directs granulocyte-macrophage colony-stimulating factor-driven monocyte differentiation toward macrophages with enhanced recognition and clearance of pathogens. Antimicrob Agents Chemother 2010;54(2):811–6.
  131. Sveinbjørnsson B, Camilio KA, Haug BE, Rekdal Ø. LTX-315: a first-in-class oncolytic peptide that reprograms the tumor microenvironment. Future Med Chem 2017;9(12):1339–44.
  132. Spicer J, Marabelle A, Baurain JF, Jebsen NL, Jøssang DE, Awada A, et al. Safety, Antitumor Activity, and T-cell Responses in a Dose-Ranging Phase I Trial of the Oncolytic Peptide LTX-315 in Patients with Solid Tumors. Clin Cancer Res 2021.
DOI: https://doi.org/10.2478/sjecr-2021-0033 | Journal eISSN: 2956-2090 | Journal ISSN: 2956-0454
Language: English
Submitted on: Oct 10, 2021
Accepted on: Dec 12, 2021
Published on: Aug 11, 2025
Published by: University of Kragujevac, Faculty of Medical Sciences
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Suzana Popovic, published by University of Kragujevac, Faculty of Medical Sciences
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

AHEAD OF PRINT