Have a personal or library account? Click to login
The Corneal Changes in Diabetic Patients Cover
Open Access
|Dec 2021

References

  1. 1. Threatt J, Williamson JF, Huynh K, Davis RM, Hermayer K. Ocular disease, knowledge and technology applications in patients with diabetes. Am J Med Sci. 2013;345(4):266-270.10.1097/MAJ.0b013e31828aa6fb363815523531956
  2. 2. Bikbova G, Oshitari T, Baba T, Bikbov M, Yamamoto S. Diabetic corneal neuropathy: clinical perspectives. Clin Ophthalmol. 2018;12:981-987.10.2147/OPTH.S145266597336529872257
  3. 3. Rosenberg ME, Tervo TM, Immonen IJ, Müller LJ, Grönhagen-Riska C, Vesaluoma MH. Corneal structure and sensitivity in type 1 diabetes mellitus. Invest Ophthalmol Vis Sci. 2000;41(10):2915-2921.
  4. 4. Mocan MC, Durukan I, Irkec M, Orhan M. Morphologic alterations of both the stromal and subbasal nerves in the corneas of patients with diabetes. Cornea. 2006;25(7):769-773.10.1097/01.ico.0000224640.58848.5417068451
  5. 5. Edwards K, Pritchard N, Vagenas D, Russell A, Malik RA, Efron N. Utility of corneal confocal microscopy for assessing mild diabetic neuropathy: baseline findings of the LANDMark study. Clin Exp Optom. 2012;95(3):348-354.10.1111/j.1444-0938.2012.00740.x22540156
  6. 6. Szalai E, Deák E, Módis L Jr, Németh G, Berta A, Nagy A, Felszeghy E, Káposzta R, Malik RA, Csutak A. Early corneal cellular and nerve fiber pathology in young patients with type 1 diabetes mellitus identified using corneal confocal microscopy. Invest Oph. Vis Sci. 2016;57(3):853-858
  7. 7. Kallinikos P, Berhanu M, O’Donnell C, Boulton AJ, Efron N, Malik RA. Corneal nerve tortuosity in diabetic patients with neuropathy. Invest Ophthalmol Vis Sci. 2004;45(2):418-422.10.1167/iovs.03-063714744880
  8. 8. Patel DV, McGhee CN. In vivo confocal microscopy of human corneal nerves in health, in ocular and systemic disease, and following corneal surgery: a review. Br J Ophthalmol. 2009;93(7):853-860.10.1136/bjo.2008.15061519019923
  9. 9. He JC, Bazan HE. Mapping the nerve architecture of diabetic human corneas. Ophthalmology. 2012;119(5):956-964.10.1016/j.ophtha.2011.10.036348008022325488
  10. 10. Madonna R, Balistreri CR, Geng YJ, De Caterina R. Diabetic microangiopathy: Pathogenetic insights and novel therapeutic approaches. Vascul Pharmacol. 2017;90:1-7.10.1016/j.vph.2017.01.00428137665
  11. 11. Bikbova G, Oshitari T, Baba T, Yamamoto S. Mechanisms of neuronal cell death in AGE-exposed retinas-research and literature review. Curr Diabetes Rev. 2017;13(3):280-288.10.2174/157339981266616051911133327193899
  12. 12. Kim J, Kim CS, Sohn E, Jeong IH, Kim H, Kim JS. Involvement of advanced glycation end products, oxidative stress and nuclear factor-kappaB in the development of diabetic keratopathy. Graefes Arch Clin Exp Ophthalmol. 2011;249(4):529-536.10.1007/s00417-010-1573-921104267
  13. 13. Babizhayev MA, Strokov IA, Nosikov VV, Savel’yeva EL, Sitnikov VF, Yegorov YE, Lankin VZ. The role of oxidative stress in diabetic neuropathy: generation of free radical species in the glycation reaction and gene polymorphisms encoding antioxidant enzymes to genetic susceptibility to diabetic neuropathy in population of type I diabetic patients. Cell Biochem Biophys. 2015;71(3):1425-1443.10.1007/s12013-014-0365-y25427889
  14. 14. Yagihashi S, Mizukami H, Sugimoto K. Mechanism of diabetic neuropathy: Where are we now and where to go? J Diabetes Investig. 2011;2(1):18-32.10.1111/j.2040-1124.2010.00070.x400801124843457
  15. 15. Leppin K, Behrendt AK, Reichard M, Stachs O, Guthoff RF, Baltrusch S, Eule JC, Vollmar B. Diabetes mellitus leads to accumulation of dendritic cells and nerve fiber damage of the subbasal nerve plexus in the Cornea. Invest Ophthalmol. Vis Sci 2014;55(6): 3603-3615.
  16. 16. Markoulli M, You JJ, Kim J, Duong CL, Tolentino JB, Karras J, Lum E. Corneal nerve morphology and tear film substance P in diabetes. Optom Vis Sci. 2017;94(7):726-731.10.1097/OPX.000000000000109628650386
  17. 17. Dana MR. Corneal antigen-presenting cells: diversity, plasticity, and disguise: the Cogan lecture. Invest Ophthalmol Vis Sci. 2004;45(3):722-727; 721.10.1167/iovs.03-080314985280
  18. 18. Qu JH, Li L, Tian L, Zhang XY, Thomas R, Sun XG. Epithelial changes with corneal punctate epitheliopathy in type 2 diabetes mellitus and their correlation with time to healing. BMC Ophthalmol. 2018;18(1):1.10.1186/s12886-017-0645-6575351729301512
  19. 19. Cai D, Zhu MF, Petroll WM, Koppaka V, Robertson DM. The impact of type 1 diabetes mellitus on corneal epithelial nerve morphology and the corneal epithelium. Am J Pathol. 2014;184(10):2662-2670.10.1016/j.ajpath.2014.06.016418887225102563
  20. 20. Chang PY, Carrel H, Huang JS, Wang IJ, Hou YC, Chen WL, Wang JY, Hu FR. Decreased density of corneal basal epithelium and subbasal corneal nerve bundle changes in patients with diabetic retinopathy. Am J Ophthalmol. 2006;142(3):488-490.10.1016/j.ajo.2006.04.03316935596
  21. 21. Di GH, Qi X, Zhao XW, Zhang SM, Danielson P, Zhou QJ. Corneal epithelium-derived neurotrophic factors promote nerve regeneration. Invest Ophthalmol Vis Sci. 2017;58(11):4695-4702.10.1167/iovs.16-2137228910445
  22. 22. Zhou QJ, Chen P, Di GH, Zhang YY, Wang Y, Qi X, Duan HY, Xie LX. Ciliary neurotrophic factor promotes the activation of corneal epithelial stem/progenitor cells and accelerates corneal epithelial wound healing. Stem Cells. 2015;33(5):1566-1576.10.1002/stem.194225546438
  23. 23. Park JH, Kang SS, Kim JY, Tchah H. Nerve growth factor attenuates apoptosis and inflammation in the diabetic Cornea. Invest Ophthalmol Vis Sci. 2016;57(15):6767-6775.10.1167/iovs.16-1974727978558
  24. 24. Morishige N, Uemura A, Morita Y, Nishida T. Promotion of corneal epithelial wound healing in diabetic rats by the fibronectin-derived peptide PHSRN. Cornea. 2017;36(12):1544-1548.10.1097/ICO.0000000000001344
  25. 25. Hu JZ, Hu XY, Kan T. MiR-34c participates in diabetic corneal neuropathy via regulation of autophagy. Invest Ophthalmol Vis Sci. 2019;60(1):16-25.10.1167/iovs.18-24968
  26. 26. Taylor HR, Kimsey RA. Corneal epithelial basement membrane changes in diabetes. Invest Ophthalmol Vis Sci. 1981;20(4):548-553.
  27. 27. Ljubimov AV, Huang ZS, Huang GH, Burgeson RE, Gullberg D, Miner JH, Ninomiya Y, Sado Y, Kenney MC. Human corneal epithelial basement membrane and integrin alterations in diabetes and diabetic retinopathy. J Histochem Cytochem. 1998;46(9):1033-1041.10.1177/002215549804600907
  28. 28. Tomomatsu T, Takamura Y, Kubo, Akagi Y. Aldose reductase inhibitorcounteracts the attenuated adhesion of human corneal epithelial cells induced by high glucose through modulation of MMP-10 expression. Diabetes Res Clin Pract. 2009;86(1):16-23.10.1016/j.diabres.2009.07.007
  29. 29. Takahashi H, Akiba K, Noguchi T, Ohmura T, Takahashi R, Ezure Y, Ohara K, Zieske JD. Matrix metalloproteinase activity is enhanced during corneal wound repair in high glucose condition. Curr Eye Res. 2000;21(2):608-615.10.1076/0271-3683(200008)2121-VFT608
  30. 30. Ishida M, Yokoi N, Okuzawa J, Maeda K, Kinoshita S. Corneal autofluorescence in patients with diabetic retinopathy. Nippon Ganka Gakkai Zasshi. 1995;99(3):308-311.
  31. 31. Mishima S. Clinical investigations on the corneal endothelium. Ophthalmology. 1982;89(6):525-530.10.1016/S0161-6420(82)34755-7
  32. 32. Sato E, Mori F, Igarashi S, Abiko T, Takeda M, Ishiko S, Yoshida A. Corneal advanced glycation end products increase in patients with proliferative diabetic retinopathy. Diabetes Care. 2001;24(3):479-482.10.2337/diacare.24.3.47911289471
  33. 33. Torricelli AA, Wilson SE. Cellular and extracellular matrix modulation of corneal stromal opacity. Exp Eye Res. 2014;129:151-160.10.1016/j.exer.2014.09.013425985725281830
  34. 34. Kumar N, Pop-Busui R, Musch DC, Reed DM, Momont AC, Hussain M, Raval N, Moroi SE, Shtein R. Central corneal thickness increase due to stromal thickening with diabetic peripheral neuropathy severity. Cornea. 2018;37(9):1138-1142.10.1097/ICO.0000000000001668608125229923859
  35. 35. Kowalczuk L, Latour G, Bourges JL, Savoldelli M, Jeanny JC, Plamann K, Schanne-Klein MC, Behar-Cohen F. Multimodal highlighting of structural abnormalities in diabetic rat and human corneas. Transl Vis Sci Technol. 2013;2(2):3.10.1167/tvst.2.2.3376389024049714
  36. 36. Zou CL, Wang SY, Huang F, Zhang YA. Advanced glycation end products and ultrastructural changes in corneas of long-term streptozotocin-induced diabetic monkeys. Cornea. 2012;31(12):1455-1459.10.1097/ICO.0b013e318249090722695699
  37. 37. Priyadarsini S, Rowsey TG, Ma JX, Karamichos D. Unravelling the stromal-nerve interactions in the human diabetic Cornea. Exp Eye Res. 2017;164:22-30.10.1016/j.exer.2017.08.003615545628827027
  38. 38. Todorovic D, Sarenac Vulovic T, Sreckovic S, Jovanovic S, Janicijevic K, Todorovic Z. Updates on the treatment of pterygium. Ser J Exp Clin Res. 2016; 17 (3): 257-261 doi: 10.1515/SJECR-2016-0012.10.1515/sjecr-2016-0012
  39. 39. Saghizadeh M, Kramerov AA, Tajbakhsh J, Aoki AM, Wang C, Chai NN, Ljubimova JY, Sasaki T, Sosne G, Carlson MR, Nelson SF, Ljubimov AV. Proteinase and growth factor alterations revealed by gene microarray analysis of human diabetic corneas. Invest Ophthalm. 2005;46(10):3604-3615.10.1167/iovs.04-1507145910516186340
  40. 40. Schwarz C, Aldrich BT, Burckart KA, Schmidt GA, Zimmerman MB, Reed CR, Greiner MA, Sander EA. Descemet membrane adhesion strength is greater in diabetics with advanced disease compared to healthy donor corneas. Exp Eye Res. 2016;153:152-158.10.1016/j.exer.2016.10.01527777123
  41. 41. Priyadarsini S, McKay TB, Sarker-Nag A, Allegood J, Chalfant C, Ma JX, Karamichos D. Complete metabolome and lipidome analysis reveals novel biomarkers in the human diabetic corneal stroma. Exp Eye Res. 2016;153:90-100.10.1016/j.exer.2016.10.010531720527742548
  42. 42. Liaboe CA, Aldrich BT, Carter PC, Skeie JM, Burckart KA, Schmidt of diabetes mellitus on donor corneal endothelial cell density. Cornea. 2017;36(5):561-566.10.1097/ICO.000000000000117428306601
  43. 43. El-Agamy A, Alsubaie S. Corneal endothelium and central corneal thickness changes in type 2 diabetes mellitus. Clin Ophthalmol. 2017;11: 481-486.10.2147/OPTH.S126217533898428280298
  44. 44. Sahu PK, Das GK, Agrawal S, Kumar S. Comparative evaluation of corneal endothelium in patients with diabetes undergoing phacoemulsification. Middle East Afr J Ophthalmol. 2017;24(2):74-80.10.4103/meajo.MEAJO_242_15559830628936050
  45. 45. Storr-Paulsen A, Singh A, Jeppesen H, Norregaard JC, Thulesen J. Corneal endothelial morphology and central thickness in patients with type II diabetes mellitus. Acta Ophthalmol 2014;92(2):158-160.10.1111/aos.1206423387877
  46. 46. Shenoy R, Khandekar R, Bialasiewicz A, Al Muniri A. Corneal endothelium in patients with diabetes mellitus: a historical cohort study. Eur J Ophthalmol. 2009;19(3):369-375.10.1177/11206721090190030719396780
  47. 47. González-Méijome JM, Jorge J, Queirós A, Peixoto-de- Matos SC,Parafita MA. Two single descriptors of endothelial polymegethism and pleomorphism. Graefes Arch Clin Exp Ophthalmol. 2010;248(8):1159-1166.10.1007/s00417-010-1337-620224952
  48. 48. Mathew PT, David S, Thomas N. Endothelial cell loss and central corneal thickness in patients with and without diabetes after manual small incision cataract surgery. Cornea. 2011;30(4):424-428.10.1097/ICO.0b013e3181eadb4b20885307
  49. 49. Kaji Y, Amano S, Usui T, Suzuki K, Tanaka S, Oshika T, Nagai R, Horiuchi S. Advanced glycation end products in Descemet’s membrane and their effect on corneal endothelial cell. Curr Eye Res. 2001;23(6):469-477.10.1076/ceyr.23.6.469.696812045898
  50. 50. Aldrich BT, Schlötzer-Schrehardt U, Skeie JM, Burckart KA, Schmidt GA, Reed CR, Zimmerman MB, Kruse FE, Greiner MA. Mitochondrial and morphologic alterations in native human corneal endothelial cells associated with diabetes mellitus. Invest Ophthalmol Vis Sci. 2017;58(4):2130-213810.1167/iovs.16-2109428395029
  51. 51. Eghrari AO, Riazuddin SA, Gottsch JD. Overview of the cornea: structure, function, and development. Prog Mol Biol Transl Sci. 2015;134: 7-23.10.1016/bs.pmbts.2015.04.00126310146
  52. 52. Latour G, Kowalczuk L, Savoldelli M, Bourges JL, Plamann K, Behar-Cohen F, Schanne-Klein MC. Hyperglycemia- induced abnormalities in rat and human corneas: the potential of second harmonic generation microscopy. PLoS One. 2012;7(11):e48388.10.1371/journal.pone.0048388348967023139780
  53. 53. Akimoto Y, Sawada H, Ohara-Imaizumi M, Nagamatsu S, Kawakami H. Change in long-spacing collagen in Descemet’s membrane of diabetic Goto-Kakizaki rats and its suppression by antidiabetic agents. Exp Diabetes Res. 2008;2008:818341.10.1155/2008/818341252806118779868
  54. 54. Nubile M, Lanzini M, Miri A, Pocobelli A, Calienno R, Curcio C, Mastropasqua R, Dua HS, Mastropasqua L. In vivo confocal microscopy in diagnosis of limbal stem cell deficiency. Am J Ophthalmol. 2013;155(2):220-232.10.1016/j.ajo.2012.08.01723127748
  55. 55. Ueno H, Hattori T, Kumagai Y, Suzuki N, Ueno S, Takagi H.Alterations in the corneal nerve and stem/progenitor cells in diabetes: preventive effects of insulin-like growth factor-1 treatment. Int J Endocrinol. 2014;2014:312401.10.1155/2014/312401394859324696681
  56. 56. Stuard WL, Titone R, Robertson DM. Tear levels of insulin- like growth factor binding protein 3 correlate with subbasal nerve plexus changes in patients with type 2 diabetes mellitus. Invest Ophthalmol Vis Sci. 2017;58(14):6105-6112.10.1167/iovs.17-22425
  57. 57. Sarenac Vulovic T, Pavlovic S, Janicijevic K, Todorovic D, Lutovac M, Paunovic S, et al. Tear film stability in patients with pseudexfoliation. Ser J Exp Clin Res. 2018; 19 (3): 243-246. doi: 10.1515/SJECR-2017-0002.10.1515/sjecr-2017-0002
  58. 58. Rocha EM, Alves M, Rios JD, Dartt DA. The aging lacrimal gland: changes in structure and function. Ocul Surf 2008;6(4):162-174.10.1016/S1542-0124(12)70177-5
  59. 59. Joussen AM, Poulaki V, Le ML, Koizumi K, Esser C, Janicki H, Schraermeyer U, Kociok N, Fauser S, Kirchhof B, Kern TS, Adamis AP. A central role for inflammation in the pathogenesis of diabetic retinopathy. FASEB J. 2004;18(12):1450-1452.10.1096/fj.03-1476fje15231732
  60. 60. Massingale ML, Li XH, Vallabhajosyula M, Chen DM, Wei Y, Asbell PA. Analysis of inflammatory cytokines in the tears of dry eye patients. Cornea. 2009;28(9):1023-1027.10.1097/ICO.0b013e3181a1657819724208
  61. 61. Kaufman HE. The practical detection of MMP-9 diagnoses ocular surface disease and may help prevent its complications. Cornea. 2013; 32(2):211-216.10.1097/ICO.0b013e3182541e9a22673852
  62. 62. Liu H, Sheng M, Liu Y, Wang P, Chen Y, Chen L, Wang W, Li B. Expression of SIRT1 and oxidative stress in diabetic dry eye. Int J Clin Exp Pathol. 2015;8(6):7644-7653.
  63. 63. Eissa IM, Khalil NM, El-Gendy HA. A controlled study on the correlation between tear film volume and tear film stability in diabetic patients. J Ophthalmol. 2016;2016:5465272.10.1155/2016/5465272478947427034823
  64. 64. Cousen P, Cackett P, Bennett H, Swa K, Dhillon B. Tear production and corneal sensitivity in diabetes. J Diabetes Complicat. 2007;21(6):371-373.10.1016/j.jdiacomp.2006.05.00817967709
  65. 65. Ding J, Liu Y, Sullivan DA. Effects of insulin and high glucose on human meibomian gland epithelial cells. Invest Ophthalmol Vis Sci. 2015;56(13):7814-7820.10.1167/iovs.15-18049468248726658502
  66. 66. Sayin N, Kara N, Pekel G. Ocular complications of diabetes mellitus. World J Diabetes. 2015; 6(1): 92–108.10.4239/wjd.v6.i1.92431732125685281
DOI: https://doi.org/10.2478/sjecr-2020-0045 | Journal eISSN: 2956-2090 | Journal ISSN: 2956-0454
Language: English
Submitted on: Sep 2, 2020
Accepted on: Oct 20, 2020
Published on: Dec 8, 2021
Published by: University of Kragujevac, Faculty of Medical Sciences
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2021 Suncica Sreckovic, Dusan Todorovic, Jasmina Stojanovic, published by University of Kragujevac, Faculty of Medical Sciences
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

AHEAD OF PRINT