Have a personal or library account? Click to login
Pathogenetic Substantiation of Therapeutic and Preventive Measures in Severe Coronavirus Infection Cover

References

  1. 1. Bolotov DD, Novikov AA, Bolevich S, Novikova NA, Yakovchenko AV. Influence of systemic inflammatory response to appearance of new foci of chronic inflammation. Ser J Exp Clin Res. 2020; 21 (1): 3-10.10.2478/sjecr-2020-0013
  2. 2. Varga Z, Flammer AJ, Steiger P, Haberecker M, Ander-matt R, Zinkernagel AS, Mehra MR, Schuepbach RA, Ruschitzka F, Moch H. Endothelial cell infection and endotheliitis in COVID-19. Lancet. 2020; 395(10234): 1417-18.10.1016/S0140-6736(20)30937-5
  3. 3. Md Insiat Islam Rabby. Current Drugs with Potential for Treatment of COVID-19: A Literature Review. J Pharm Pharm Sci. 2020; 23(1): 58-64.10.18433/jpps3100232251618
  4. 4. Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, Si HR, Zhu Y, Li B, Huang CL, Chen HD, Chen J, Luo Y, Guo H, Jiang RD, Liu MQ, Chen Y, Shen XR, Wang X, Zheng XS, Zhao K, Chen QJ, Deng F, Liu LL, Yan B, Zhan FX, Wang YY, Xiao GF, Shi ZL. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020; 579(7798): 270-3.10.1038/s41586-020-2012-7709541832015507
  5. 5. Atri D, Siddiqi HK, Lang JP, Nauffal V, Morrow DA, Bohula EA. COVID-19 for the Cardiologist: Basic Virology, Epidemiology, Cardiac Manifestations, and Potential Therapeutic Strategies. JACC Basic Transl Sci. 2020; 5(5): 518-36.10.1016/j.jacbts.2020.04.002715139432292848
  6. 6. Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, Schiergens TS, Herrler G, Wu NH, Nitsche A, Müller MA, Drosten C, Pöhlmann S. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell. 2020; 181(2): 271-80.10.1016/j.cell.2020.02.052710262732142651
  7. 7. Muus C, et al., Integrated analyses of single-cell atlases reveal age, gender, and smoking status associations with cell type-specific expression of mediators of SARSCoV-2 viral entry and highlights inflammatory programs in putative target cells. bioRxiv. 2020; doi: 10.1101/2020.04.19.049254.10.1101/2020.04.19.049254
  8. 8. Hamming I, Cooper ME, Haagmans BL, Hooper NM, Korstanje R, Osterhaus AD, Timens W, Turner AJ, Navis G, van Goor H. The emerging role of ACE2 in physiology and disease. J Pathol. 2007; 212(1): 1-11.10.1002/path.2162716772417464936
  9. 9. Hamming I, Timens W, Bulthuis ML, Lely AT, Navis G, van Goor H. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol. 2004; 203: 631-7.10.1002/path.1570716772015141377
  10. 10. Ferrario CM, Jessup J, Chappell MC et al. Effect of angiotensin-converting enzyme inhibition and angiotensin II receptor blockers on cardiac angiotensin-converting enzyme 2. Circulation. 2005; 111: 2605-2610.10.1161/CIRCULATIONAHA.104.51046115897343
  11. 11. Carly G, Ziegler K, et al. SARS-CoV-2 receptor ACE2 is an interferon-stimulated gene in human airway epithelial cells and is detected in specific cell subsets across tissues. Cell 2020. doi: 10.1016/j.cell.2020.04.035.10.1016/j.cell.2020.04.035
  12. 12. Rajendran P, Rengarajan T, Thangavel J, Nishigaki Y, Sakthisekaran D, Sethi G, Nishigaki I. The Vascular Endothelium and Human Diseases. Int J Biol Sci 2013; 9(10): 1057–1069.10.7150/ijbs.7502
  13. 13. Kade AK, Zanin SA, Gubareva EA, Turovaya AY, Bogdanova YA, Apsalyamova SO, Merzlyakova SN. Physiological functions of the vascular endothelium. Basic research. 2011; 11(3): 611-617.
  14. 14. Chatterjee S. Endothelial Mechanotransduction, Redox Signaling and the Regulation of Vascular Inflammatory Pathways. Front Physiol. 2018; 9: 524.10.3389/fphys.2018.00524
  15. 15. Ciceri F, Beretta L, Scandroglio AM, Colombo S, Landoni G, Ruggeri A, Peccatori J, D’Angelo A, De Cobelli F, Rovere-Querini P, Tresoldi M, Dagna L, Zangrillo A. Microvascular COVID-19 lung vessels obstructive thromboinflammatory syndrome (MicroCLOTS): an atypical acute respiratory distress syndrome working hypothesis. Crit Care Resusc. 2020; 22(2): 95-97.10.51893/2020.2.pov2
  16. 16. Lai CC, Shih TP, Ko WC, Tang HJ, Hsueh PR. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): The epidemic and the challenges. Int J Antimicrob Agents. 2020; 55(3): 105924.10.1016/j.ijantimicag.2020.105924
  17. 17. Special Expert Group for Control of the Epidemic of Novel Coronavirus Pneumonia of the Chinese Preventive Medicine Association. An update on the epidemio-logical characteristics of novel coronavirus pneumonia (COVID-19). Chin J Epidemiol. 2020; 41.
  18. 18. Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, Xiang J, Wang Y, Song B, Gu X, Guan L, Wei Y, Li H, Wu X, Xu J, Tu S, Zhang Y, Chen H, Cao B. Clinical course and risk factors for mortality of adult in patients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020 Mar 28;395(10229):1054-1062.10.1016/S0140-6736(20)30566-3
  19. 19. Liu W, Tao Z-W, Wang L, Yuan M-L, Liu K, Zhou L, Wei S, Deng Y, Liu J, Liu H-G, Yang M, Hu Y, Analysis of factors related to the clinical outcome in hospitalized patients with a new type of coronavirus infection. Chin Med J (Engl). 2020; 133(9): 1032-1038.10.1097/CM9.0000000000000775
  20. 20. Alhazzani W, Møller MH, Arabi YM, Loeb M, Gong MN, Fan E, Oczkowski S, Levy MM, Derde L, Dzierba A, Du B, Aboodi M, Wunsch H, Cecconi M, Koh Y, Chertow DS, Maitland K, Alshamsi F, Belley-Cote E, Greco M, Laundy M, Morgan JS, Kesecioglu J, McGeer A, Mermel L, Mammen MJ, Alexander PE, Arrington A, Centofanti JE, Citerio G, Baw B, Memish ZA, Hammond N, Hayden FG, Evans L, Rhodes A. Surviving Sepsis Campaign: guidelines on the management of critically ill adults with Coronavirus Disease 2019 (COVID-19). Intensive Care Med. 2020; 46(5): 854-887.10.1007/s00134-020-06022-5
  21. 21. Guidelines for the management of critically ill adults with coronavirus disease 2019 (COVID-19), Translated by V.S. Gorokhovsky, M.B. Kutsego, A.A. Naumenko, V.D. Hunter, I.R. Cherkashina, https://rosomed.ru/documents/rukovodstvo-po-vedeniu-kriticheski-bolnyhvzroslyh-s-koronavirusnoi-boleznu-2019-covid-19-vperevode-na-russkii-yazyk (date of the application 21.04.2020).
  22. 22. Chousterman BG, Swirski FK, Weber GF. Cytokine storm and sepsis disease pathogenesis. Semin Immunopathol. 2017; 39: 517–528.10.1007/s00281-017-0639-8
  23. 23. Chakraborty RK, Burns B. Systemic Inflammatory Response Syndrome. [Updated 2020 Apr 28]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2020 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK547669/
  24. 24. Gusev EY, Chereshnev VA, Yurchenko LN. Systemic inflammation from the perspective of the theory of a typical pathological process. Cytokines and inflammation. 2007; 6(4): 9-21.
  25. 25. Clapp BR, Hingorani AD, Kharbanda RK, Mohamed-Ali V, Stephens JW, Vallance P, MacAllister RJ. Inflammation-induced endothelial dysfunction involves reduced nitric oxide bioavailability and increased oxidant stress. Cardiovasc Res. 2004; 64: 172-8.10.1016/j.cardiores.2004.06.020
  26. 26. Moshage H. Cytokines and the hepatic acute phase response. J Pathol. 1997; 181(3): 257-66.10.1002/(SICI)1096-9896(199703)181:3<;257::AID-PATH756>3.0.CO;2-U
  27. 27. Schalkwijk CG, Poland DCW, van Dijk W, Kok A, Emeis JJ, Drager AM, Doni A, van Hinsbergh VWM, Stehouwer CDA. Plasma concentration of c-reactive protein is increased in type i diabetic patients without clinical macroangiopathy and correlates with markers of endothelial dysfunction: evidence for chronic inflammation. Diabetologia. 1999; 42: 351-7.10.1007/s00125005116210096789
  28. 28. Ye Q, Wang B, Mao J. The pathogenesis and treatment of the `Cytokine Storm’ in COVID-19. J Infect. 2020; 80(6): 607-13.10.1016/j.jinf.2020.03.037719461332283152
  29. 29. Bannenberg GL, Chiang N, Ariel A, Arita M, Tjonahen E, Gotlinger KH, Hong S, Serhan CN. Molecular Circuits of Resolution: Formation and Actions of Resolvins and Protectins. J Immunol. 2005; 174: 4345-55.10.4049/jimmunol.174.7.434515778399
  30. 30. Norling LV, Dalli LL, Dalli J. Resolving Inflammation by using Nutrition Therapy: Roles for Specialized Pro-Resolving Mediators. Curr Opin Clin Nutr Metab Care. 2017; 20(2): 145-152.10.1097/MCO.0000000000000353588442728002074
  31. 31. Serhan CN, Brain SD, Buckley CD, Gilroy DW, Haslett C, O’Neill LAJ, Perretti M, Rossi AG, Wallace JL. Resolution of inflammation: state of the art, definitions and terms. FASEB J. 2007; 21(2): 325-332.10.1096/fj.06-7227rev311963417267386
  32. 32. Sugimoto MA, Sousa LP, Pinho V, Perretti M, Teixeira MM. Resolution of Inflammation: What Controls Its Onset? Front Immunol. 2016; 7: 16010.3389/fimmu.2016.00160
  33. 33. Sansbury BE, Spite M. Resolution of Acute Inflammation and the Role of Resolvins in Immunity, Thrombosis and Vascular Biology. Circ Res. 2016; 119(1): 113-30.10.1161/CIRCRESAHA.116.307308526082727340271
  34. 34. Serhan CN. Treating inflammation and infection in the 21st century: new hints from decoding resolution mediators and mechanisms. FASEB J. 2017; 31(4): 1273-88.10.1096/fj.201601222R534979428087575
  35. 35. Serhan CN, Yacoubian S, Yang R. Anti-Inflammatory and Pro-Resolving Lipid Mediators. Annu Rev Pathol. 2008; 3: 279-312.10.1146/annurev.pathmechdis.3.121806.151409273939618233953
  36. 36. Serhan CN. Resolution phase of inflammation: novel endogenous anti-inflammatory and proresolving lipid mediators and pathways. Annu Rev Immunol. 2007;25:101– 137. DOI:10,1146/annurev.immunol.25.022106.141647.10.1146/annurev.immunol.25.022106.141647
  37. 37. Molfino A, Amabile MI, Monti M, Muscaritoli M. Omega-3 Polyunsaturated Fatty Acids in Critical Illness: Anti-Inflammatory, Proresolving, or Both? Oxid Med Cell Longev. 2017; 2017: 5987082.10.1155/2017/5987082
  38. 38. Duvall MG, Levy BD. DHA- and EPA-derived resolvins, protectins, and maresins in airway inflammation, Eur J Pharmacol. 2016; 785: 144-155.10.1016/j.ejphar.2015.11.001
  39. 39. Papa ND, Pignataro F. The Role of Endothelial Progenitors in the Repair of Vascular Damage in Systemic Sclerosis. Front Immunol. 2018; 9:1383.10.3389/fimmu.2018.01383601588129967618
  40. 40. Maddox JF, Hachicha M, Takano T, Petasis NA, Fokin VV, Serhan CN. Lipoxin A4 stable analogs are potent mimetics that stimulate human monocytes and THP-1 cells via a G-protein-linked lipoxin A4 receptor. J Biol Chem. 1997; 272(11): 6972-8.10.1074/jbc.272.11.69729054386
  41. 41. Guilford WJ, Parkinson JF. Second-generation beta-oxidation resistant 3-oxa-lipoxin A4 analogs. Prostaglandins Leukot Essent Fatty Acids. 2005; 73(3-4): 245-50.10.1016/j.plefa.2005.05.01215985364
  42. 42. Safety and Preliminary Efficacy of Lipoxin Analog BLXA4-ME Oral Rinse for the Treatment of Gingivitis (BLXA4), ClinicalTrials.gov Identifier: NCT02342691.
  43. 43. Faller S, Hoetzel A. Carbon monoxide in acute lung injury. Curr Pharm Biotechnol. 2012; 13(6): 777-86.10.2174/13892011280039918522201607
  44. 44. Shinohara M, Kibi M, Riley IR, Chiang N, Dalli J, Kraft BD, Piantadosi CA, Choi AM, Serhan CN. Cell-cell interactions and bronchoconstrictor eicosanoid reduction with inhaled carbon monoxide and resolvin D1. Am J Physiol Lung Cell Mol Physiol. 2014; 307(10): L746-57.10.1152/ajplung.00166.2014423329225217660
  45. 45. Dalli J, Kraft BD, Colas RA, Shinohara M, Fredenburgh LE, Hess DR, Chiang N, Welty-Wolf K, Choi AM, Piantadosi CA, Serhan CN. The Regulation of Proresolving Lipid Mediator Profiles in Baboon Pneumonia by Inhaled Carbon Monoxide. Am J Respir Cell Mol Biol. 2015; 53(3): 314-25.10.1165/rcmb.2014-0299OC456606525568926
  46. 46. Rossi AG, Sawatzky DA, Walker A, Ward C, Sheldrake TA, Riley NA, Caldicott A, Martinez-Losa M, Walker TR, Duffin R, Gray M, Crescenzi E, Martin MC, Brady HJ, Savill JS, Dransfield I, Haslett C. Cyclin-dependent kinase inhibitors enhance the resolution of inflammation by promoting inflammatory cell apoptosis. Nat Med. 2006; 12(9): 1056-64.10.1038/nm146816951685
  47. 47. Dalli J, Norling LV, Montero-Melendez T, Federici Canova D, Lashin H, Pavlov AM, Sukhorukov GB, Hinds CJ, Perretti M. Microparticle alpha-2-macroglobulin enhances pro-resolving responses and promotes survival in sepsis. EMBO Mol Med. 2014; 6(1): 27-42.10.1002/emmm.201303503393649024357647
  48. 48. Njock MS, Cheng HS, Dang LT, Nazari-Jahantigh M, Lau AC, Boudreau E, Roufaiel M, Cybulsky MI, Schober A, Fish JE. Endothelial cells suppress monocyte activation through secretion of extracellular vesicles containing antiinflammatory microRNAs. Blood. 2015; 125(20): 3202-12.10.1182/blood-2014-11-611046444088825838349
  49. 49. Wang J, Wang BJ, Yang JC, Wang MY, Chen C, Luo GX, He WF. Research advances in the mechanism of pulmonary fibrosis induced by coronavirus disease 2019 and the corresponding therapeutic measures. Zhonghua Shao Shang Za Zhi. 2020; 36(8): 691-7.
  50. 50. Zhang T, Sun LX, Feng RE. Comparison of clinical and pathological features between severe acute respiratory syndrome and coronavirus disease 2019. Zhonghua Jie He He Hu Xi Za Zhi. 2020; 43(6): 496-502.
  51. 51. Barton LM, Duval EJ, Stroberg E, Ghosh S, Mukhopadhyay S. COVID-19 Autopsies, Oklahoma, USA. Am J Clin Pathol. 2020; 153(6): 725-33.10.1093/ajcp/aqaa062718443632275742
  52. 52. Cho JG, Lee A, Chang W, Lee MS, Kim J. Endothelial to Mesenchymal Transition Represents a Key Link in the Interaction between Inflammation and Endothelial Dys-function. Front Immunol. 2018; 9: 294.10.3389/fimmu.2018.00294582619729515588
  53. 53. Uddin M, Levy BD. Resolvins: natural agonists for resolution of pulmonary inflammation. Prog Lipid Res. 2011; 50(1): 75-88.10.1016/j.plipres.2010.09.002301213920887750
  54. 54. Al-Soudi A, Kaaij MH, Tas SW. Endothelial cells: From innocent bystanders to active participants in immune responses. Autoimmun Rev. 2017; 16(9): 951-62.10.1016/j.autrev.2017.07.00828698091
  55. 55. Kawai T, Akira S. Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity. 2011; 34(5): 637-50.10.1016/j.immuni.2011.05.00621616434
  56. 56. Salvador B, Arranz A, Francisco S, Córdoba L, Punzón C, Llamas MÁ, Fresno M. Modulation of endothelial function by Toll like receptors. Pharmacol Res. 2016; 108: 46-56.10.1016/j.phrs.2016.03.03827073018
  57. 57. Khakpour S, Wilhelmsen K, Hellman J. Vascular endothelial cell Toll-like receptor pathways in sepsis. Innate Immun. 2015; 21(8): 827-46.10.1177/175342591560652526403174
  58. 58. Herzog C, Haun RS, Kaushal GP. Role of meprin metal-loproteinases in cytokine processing and inflammation. Cytokine. 2019; 114: 18-25.10.1016/j.cyto.2018.11.032641426630580156
  59. 59. Muller WA. Transendothelial migration: unifying principles from the endothelial perspective. Immunol Rev. 2016; 273(1): 61-75.10.1111/imr.12443509097927558328
  60. 60. Reglero-Real N, Colom B, Bodkin JV, Nourshargh S. Endothelial Cell Junctional Adhesion Molecules: Role and Regulation of Expression in Inflammation. Arterioscler Thromb Vasc Biol. 2016; 36(10): 2048-57.10.1161/ATVBAHA.116.307610503553927515379
  61. 61. Vestweber D. How leukocytes cross the vascular endothelium. Nat Rev Immunol. 2015; 15(11): 692-704.10.1038/nri390826471775
  62. 62. Serhan CN. Novel Pro-Resolving Lipid Mediators in Inflammation Are Leads for Resolution Physiology, Nature. 2014; 510(7503): 92-101.10.1038/nature13479
  63. 63. Serhan CN, Chiang N, Dalli J. The resolution code of acute inflammation: Novel pro-resolving lipid mediators in resolution. Semin Immunol. 2015; 27(3): 200-15. Johansson PI, Stensballe J, Rasmussen LS, Ostrowski SR.10.1016/j.smim.2015.03.004451537125857211
  64. 64. A high admission syndecan-1 level, a marker of endothelial glycocalyx degradation, is associated with inflammation, protein C depletion, fibrinolysis, and increased mortality in trauma patients. Ann Surg. 2011; 254(2): 194-200.10.1097/SLA.0b013e318226113d21772125
  65. 65. Neves FM, Meneses GC, Sousa NE, Menezes RR, Parahyba MC, Martins AM, Libório AB. Syndecan-1 in Acute Decompensated Heart Failure--Association With Renal Function and Mortality. Circ J. 2015; 79(7): 1511-9.10.1253/circj.CJ-14-1195
  66. 66. Sieve I, Münster-Kühnel AK, Hilfiker-Kleiner D. Regulation and function of endothelial glycocalyx layer in vascular diseases. Vascul Pharmacol. 2018; 100: 26-33.10.1016/j.vph.2017.09.002
  67. 67. Incalza MA, D’Oria R, Natalicchio A, Perrini S, Laviola L, Giorgino F. Oxidative stress and reactive oxygen species in endothelial dysfunction associated with cardiovascular and metabolic diseases. Vascul Pharmacol. 2018; 100: 1-19.10.1016/j.vph.2017.05.005
  68. 68. Nourshargh S, Alon R. Leukocyte migration into inflamed tissues. Immunity. 2014; 41(5): 694-707.10.1016/j.immuni.2014.10.008
  69. 69. Pober JS, Cotran RS. The role of endothelial cells in inflammation. Transplantation. 1990; 50(4): 537-44.10.1097/00007890-199010000-00001
  70. 70. Pober JS, Sessa WC. Evolving functions of endothelial cells in inflammation. Nat Rev Immunol. 2007; 7(10): 803-15.10.1038/nri2171
  71. 71. London NR, Zhu W, Bozza FA, Smith MC, Greif DM, Sorensen LK, Chen L, Kaminoh Y, Chan AC, Passi SF, Day CW, Barnard DL, Zimmerman GA, Krasnow MA, Li DY. Targeting Robo4-dependent Slit signaling to survive the cytokine storm in sepsis and influenza. Sci Transl Med. 2010; 2(23): 23ra19.10.1126/scitranslmed.3000678
  72. 72. Escher R, Breakey N, Lämmle B. Severe COVID-19 infection associated with endothelial activation. Thromb Res. 2020; 190: 62.10.1016/j.thromres.2020.04.014
  73. 73. Hunt B, Retter A, McClintock C. Practical guidance for the prevention of thrombosis and management of coagulopathy and disseminated intravascular coagulation of patients infected with COVID-19.
  74. 74. Kollias A, Kyriakoulis KG, Dimakakos E, Poulakou G, Stergiou GS, Syrigos K. Thromboembolic risk and anticoagulant therapy in COVID-19 patients: emerging evidence and call for action. Br J Haematol. 2020; 189(5): 846-847.10.1111/bjh.16727
  75. 75. Spyropoulos AC, Ageno W, Barnathan ES. Hospital-based use of thromboprophylaxis in patients with COVID-19. Lancet. 2020; 395(10234): e75.10.1016/S0140-6736(20)30926-0
  76. 76. Fan H, Goodwin AJ, Chang E, Zingarelli B, Borg K, Guan S, Halushka PV, Cook JA. Endothelial progenitor cells and a stromal cell-derived factor-1α analogue synergistically improve survival in sepsis. Am J Respir Crit Care Med. 2014; 189(12): 1509-19.10.1164/rccm.201312-2163OC422601524707934
  77. 77. Halaidych OV, Freund C, van den Hil F, Salvatori DCF, Riminucci M, Mummery CL, Orlova VV. Inflammatory Responses and Barrier Function of Endothelial Cells Derived from Human Induced Pluripotent Stem Cells. Stem Cell Reports. 2018 May 8;10(5):1642-56.10.1016/j.stemcr.2018.03.012599530329657098
  78. 78. Votrin SV, Vorobyev SI, Bolevich SB, Use of perfluorocarbon based blod substitute perftoran in correction of hypoxia dyring acute anemia in animals. Ser J Exp Clin Res. 2019; 20(3): 245-50.10.2478/sjecr-2018-0056
  79. 79. Vorobyov SI, Moiseenko OM, Belyaev BL, Srednyakov VA, Luzganov YuV. Colloid-chemical and medico-biological characteristics of the perfluorocarbon Ftoremulsion III. Pharm Chem J. 2009; 43(5): 267-73.10.1007/s11094-009-0278-z
  80. 80. Vorobyov SI. Perfluorocarbon blood-replacing emulsions of the 1st and 2nd generation. Pharm Chem J. 2009; 43(4): 30-40.10.1007/s11094-009-0268-1
DOI: https://doi.org/10.2478/sjecr-2020-0043 | Journal eISSN: 2956-2090 | Journal ISSN: 2956-0454
Language: English
Page range: 189 - 199
Submitted on: Oct 14, 2020
Accepted on: Oct 18, 2020
Published on: Dec 21, 2020
Published by: University of Kragujevac, Faculty of Medical Sciences
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2020 Alexey Alexeevich Novikov, Sergey Bolevich, Sergey Ivanovich Vorobjov, Nina Aleksandrovna Novikova, Denis Dmitrievich Bolotov, Andrey Vladimirovich Yakovchenko, published by University of Kragujevac, Faculty of Medical Sciences
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.