Have a personal or library account? Click to login
Synergism of PDL/PD1 and IL33/ST2 Axis in Tumor Immunology Cover
Open Access
|Nov 2019

References

  1. 1. Garlanda C, Dinarello CA, Mantovani A. The interleukin – 1 family: back to the future. Immunity. 2013;39(6):1003-1018.10.1016/j.immuni.2013.11.010393395124332029
  2. 2. Günther S et al. IL-1 Family Cytokines Use Distinct Molecular Mechanisms to Signal through Their Shared Co-receptor. Immunity. 2017 19;47(3):510-52310.1016/j.immuni.2017.08.004584908528930661
  3. 3. Wasmer M-H, Krebs P. The Role of IL-33-Dependent Inflammation in the Tumor Microenvironment. Frontiers in Immunology. 2016;7:682.10.3389/fimmu.2016.00682
  4. 4. Ali S, Mohs A, Thomas M, Klare J, Ross R, Schmitz ML, Martin MU. The dual function cytokine IL-33 interacts with the transcription factor NF-κB to dampen NF-κB-stimulated gene transcription. J Immunol. 2011;15;187(4):1609-16.10.4049/jimmunol.100308021734074
  5. 5. Gadina M, Jefferies CA. IL-33: a sheep in wolf’s clothing? Sci STKE. 2007 Jun 12;2007:390.10.1126/stke.3902007pe3117565120
  6. 6. Gao X et al. Tumoral expression of IL-33 inhibits tumor growth and modifies the tumor microenvironment through CD8+ T and NK cells. J Immunol. 2015 Jan 1;194(1):438-4510.4049/jimmunol.1401344427290125429071
  7. 7. Lu B, Yang M, Wang Q. Interleukin-33 in tumorigenesis, tumor immune evasion, and cancer immunotherapy. J Mol Med; 2016;94(5):535-432692261810.1007/s00109-016-1397-026922618
  8. 8. Dominguez D et al. Exogenous IL-33 Restores Dendritic Cell Activation and Maturation in Established Cancer. Immunol. 2017 1;198(3):1365-137510.4049/jimmunol.1501399526311328011934
  9. 9. Amôr NG et al. ST2/IL-33 signaling promotes malignant development of experimental squamous cell carcinoma by decreasing NK cells cytotoxicity and modulating the intratumoral cell infiltrate. Oncotarget. 2018 Jul 20;9(56):30894-30904.10.18632/oncotarget.25768608939930112116
  10. 10. Lin SH et al. Inflammation elevated IL-33 originating from the lung mediates inflammation in acute lung injury. Clin Immunol; 2016; 30535-6.10.1016/j.clim.2016.10.01427989898
  11. 11. Yang M, Feng Y, Yue C, Xu B, Chen L, Jiang J, Lu B, Zhu Y. Lower expression level of IL-33 is associated with poor prognosis of pulmonary adenocarcinoma. PLoS One. 2018 2;13(3).10.1371/journal.pone.0193428583417529499051
  12. 12. Chen J et al. Interleukin-33 Contributes to the Induction of Th9 Cells and Antitumor Efficacy by Dectin-1-Activated Dendritic Cells. Front Immunol. 2018 31;9:1787.10.3389/fimmu.2018.01787607924230108595
  13. 13. Jovanovic I, Radosavljevic G, Mitrovic M, Juranic VL, McKenzie AN, Arsenijevic N, et al. (2011) ST2 deletion enhances innate and acquired immunity to murine mammary carcinoma. Eur J Immunol 41: 1902–1912.10.1002/eji.201141417374612721484786
  14. 14. Zhang Y et al. IL-33 promotes growth and liver metastasis of colorectal cancer in mice by remodeling the tumor microenvironment and inducing angiogenesis. Mol Carcinog 56: 272–287.10.1002/mc.22491563013627120577
  15. 15. Ishikawa K et al. Expression of interleukin-33 is correlated with poor prognosis of patients with squamous cell carcinoma of the tongue. Auris Nasus Larynx. 2014 Dec;41(6):552-7.10.1016/j.anl.2014.08.00725193287
  16. 16. Chen SF et al. The paracrine effect of cancer-associated fibroblast-induced interleukin-33 regulates the invasiveness of head and neck squamous cell carcinoma. J Pathol. 2013 Oct;231(2):180-9.10.1002/path.422623775566
  17. 17. Lu B, Yang M, Wang Q. Interleukin-33 in tumorigenesis, tumor immune evasion, and cancer immunotherapy. J Mol Med 94: 535–543.10.1007/s00109-016-1397-026922618
  18. 18. Li J et al. Biliary repair and carcinogenesis are mediated by IL-33-dependent cholangiocyte proliferation. J Clin Invest. 2014; 124(7):3241-51.10.1172/JCI73742407137024892809
  19. 19. Zhang JF et al. IL33 enhances glioma cell migration and invasion by upregulation of MMP2 and MMP9 via the ST2-NF-κB pathway. Oncol Rep. 2017 Oct;38(4):2033-2042.10.3892/or.2017.5926565295128849217
  20. 20. Xiao P et al. Interleukin 33 in tumor microenvironment is crucial for the accumulation and function of myeloid-derived suppressor cells. Oncoimmunology. 2015. 24;5(1)10.1080/2162402X.2015.1063772476033826942079
  21. 21. Ishida Y, Agata Y, Shibahara K, Honjo T. Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. EMBOJ. 1992 (11):3887-9510.1002/j.1460-2075.1992.tb05481.x
  22. 22. Park YJ, Kuen DS, Chung Y. Future prospects of immune checkpoint blockade in cancer: from response prediction to overcoming resistance. Exp Mol Med. 2018 22;50(8):109.10.1038/s12276-018-0130-1610567430135516
  23. 23. Francisco LM, Sage PT, Sharpe AH. The PD-1 pathway in tolerance and autoimmunity. Immunol Rev. 2010; 236: 219-242.10.1111/j.1600-065X.2010.00923.x291927520636820
  24. 24. Ortler S et al. B7-H1 restricts neuroantigen-specific T cell responses and confines inflammatory CNS damage: implications for the lesion pathogenesis of multiple sclerosis. Eur J Immunol. 2008;38(6):1734-4410.1002/eji.20073807118421793
  25. 25. Sharpe AH, Pauken KE. The diverse functions of the PD1 inhibitory pathway. Nat Rev Immunol. 2018;18(3):153-16710.1038/nri.2017.10828990585
  26. 26. Zou W, Chen L. Inhibitory B7-family molecules in the tumour microenvironment. Nat Rev Immunol. 2008; 8: 467-477.10.1038/nri232618500231
  27. 27. Gupta PK et al. CD39 Expression Identifies Terminally Exhausted CD8+ T Cells. PLoS Pathog. 2015;11(10):e1005177.10.1371/journal.ppat.1005177461899926485519
  28. 28. Starr R et al. A family of cytokine-inducible inhibitors of signalling. Nature. 1997; 387: 917-921.10.1038/432069202125
  29. 29. Massari F et al. PD-1 blockade therapy in renal cell carcinoma: current studies and future promises. Cancer Treat Rev. 2015; 41: 114-121.10.1016/j.ctrv.2014.12.01325586601
  30. 30. Ahmad SM et al. The inhibitory checkpoint, PD-L2, is a target for effector T cells: Novel possibilities for immune therapy. Oncoimmunology. 2017;7(2): e1390641.10.1080/2162402X.2017.1390641574966929308318
  31. 31. Francisco LM, Sage PT, Sharpe AH. The PD-1 pathway in tolerance and autoimmunity. Immunol Rev. 2010;236:219-42.10.1111/j.1600-065X.2010.00923.x
  32. 32. Reynolds J et al. Stimulation of the PD-1/PDL-1 T-cell co-inhibitory pathway is effective in treatment of experimental autoimmune glomerulonephritis. Nephrol Dial Transplant. 2012 Apr;27(4):1343-50.10.1093/ndt/gfr52921965585
  33. 33. Keir ME, Butte MJ, Freeman GJ, Sharpe AH. PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol. 2008; 26:677–704.10.1146/annurev.immunol.26.021607.09033118173375
  34. 34. White MPJ, Webster G, Leonard F, La Flamme AC. Innate IFN-γ ameliorates experimental autoimmune encephalomyelitis and promotes myeloid expansion and PDL-1 expression. Sci Rep. 2018 Jan 10;8(1):259.10.1038/s41598-017-18543-z576289129321652
  35. 35. Rowe JH, Ertelt JM, Way SS. Innate IFN-γ is essential for programmed death ligand-1-mediated T cell stimulation following Listeria monocytogenes infection. J Immunol. 2012;189(2):876-84.10.4049/jimmunol.1103227340234222711893
  36. 36. Riley JL. PD-1 signaling in primary T cells. Immunol Rev. 2009; 229: 114-125.10.1111/j.1600-065X.2009.00767.x342406619426218
  37. 37. Okazaki T, Maeda A, Nishimura H, Kurosaki T, Honjo T. PD-1 immunoreceptor inhibits B cell receptor-mediated signaling by recruiting src homology 2-domain-containing tyrosine phosphatase 2 to phosphotyrosine. Proc Natl Acad Sci U S A. 2001; 98: 13866-13871.10.1073/pnas.2314865986113311698646
  38. 38. Schlößer HA, Theurich S, Shimabukuro-Vornhagen A, Holtick U, Stippel DL, von Bergwelt-Baildon M. Overcoming tumor-mediated immunosuppression. Immunotherapy., 2014; 6: 973-98810.2217/imt.14.58
  39. 39. Chen X et al. PD-1 regulates extrathymic regulatory T-cell differentiation. Eur J Immunol. 2014; 44: 2603-2616.10.1002/eji.201344423416570124975127
  40. 40. Meng Y, Liang H, Hu J, Liu S, Hao X, Wong MSK, Li X, Hu L. PD-L1 Expression Correlates With Tumor Infiltrating Lymphocytes And Response To Neoadjuvant Chemotherapy In Cervical Cancer. J Cancer. 2018;9(16):2938-2945.10.7150/jca.22532609636430123362
  41. 41. Kim JM, Chen DS. Immune escape to PD-L1/PD-1 blockade: seven steps to success (or failure). Ann Oncol. 2016;27(8):1492-504.10.1093/annonc/mdw21727207108
  42. 42. Taube JM et al. Colocalization o inflammatory response with B7-h1 expression in human melanocytic lesions supports an adaptive resistance mechanism of immune escape. Sci Transl Med. 2012 28;4(127):12710.1126/scitranslmed.3003689356852322461641
  43. 43. Cheng B, Yuan WE, Su J, Liu Y, Chen J. Recent advances in small molecule based cancer immunotherapy. Eur J Med Chem. 2018;157:582-598.10.1016/j.ejmech.2018.08.02830125720
  44. 44. Ostrand-Rosenberg S, Horn LA, Haile ST. The programmed death-1 immune-suppressive pathway: barrier to antitumor immunity. J Immunol. 2014 Oct 15;193(8):3835-41.10.4049/jimmunol.1401572418542525281753
  45. 45. Larkin J et al. Combined Nivolumab and Ipilimumab or Monotherapy in Untreated Melanoma. N Engl J Med. 2015;373(13): 1270-1.10.1056/NEJMc150966026398076
  46. 46. Roger A et al. Efficacy of combined hypo-fractionated radiotherapy and anti-PD-1 monotherapy in difficult-to-treat advanced melanoma patients. Oncoimmunology. 2018;7(7): e1442166.10.1080/2162402X.2018.1442166605330030034949
  47. 47. Zeng J, See AP, Phallen J, Jackson CM, Belcaid Z, Ruzevick J, Durham N, Meyer C, Harris TJ, Albesiano E, Pradilla G, Ford E, Wong J, Hammers HJ, Mathios D, Tyler B, Brem H, Tran PT, Pardoll D, Drake CG, Lim M. Anti-PD-1 blockade and stereotactic radiation produce long-term survival in mice with intracranial gliomas. Int J Radiat Oncol Biol Phys. 2013;86(2):343-9.2346241910.1016/j.ijrobp.2012.12.025396340323462419
  48. 48. Choi N, Shin DY, Kim HJ, Moon UY, Baek KH, Jeong HS. Postoperative anti-PD-1 antibody treatment to reduce recurrence in a cancer ablation surgical wound. J Surg Res. 2018;221:95-103.10.1016/j.jss.2017.08.02229229160
  49. 49. Qin L et al. Exogenous IL-33 overcomes T cell tolerance in murine acute myeloid leukemia. Oncotarget. 2016;7(38):61069-61080.10.18632/oncotarget.11179530863627517629
  50. 50. Blankenstein T, Coulie PG, Gilboa E, Jaffee EM. The determinants of tumour immunogenicity. Nat Rev Cancer. 2012 1;12(4):307-13.10.1038/nrc3246355260922378190
DOI: https://doi.org/10.2478/sjecr-2018-0033 | Journal eISSN: 2956-2090 | Journal ISSN: 2956-0454
Language: English
Page range: 223 - 228
Submitted on: Aug 31, 2018
Accepted on: Sep 4, 2018
Published on: Nov 7, 2019
Published by: University of Kragujevac, Faculty of Medical Sciences
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2019 Marina Jovanovic, Nevena Gajovic, Miodrag L. Lukic, Ana Popovic, Ivan Jovanovic, published by University of Kragujevac, Faculty of Medical Sciences
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.