Have a personal or library account? Click to login
Assessment of Stable Slopes Through BPSO-Driven Ensemble Models Cover

Assessment of Stable Slopes Through BPSO-Driven Ensemble Models

Open Access
|Dec 2025

References

  1. Abramson, L. W., Lee, T. S., Sharma, S., & Boyce, G. M. (2001). Slope stability and stabilization methods. John Wiley & Sons.
  2. Ahangari Nanehkaran, Y., Pusatli, T., Chengyong, J., Chen, J., Cemiloglu, A., Azarafza, M., & Derakhshani, R. (2022). Application of machine learning techniques for the estimation of the safety factor in slope stability analysis. Water, 14(22), 3743.
  3. Alshboul, O., Almasabha, G., Shehadeh, A., & Al-Shboul, K. (2024). A comparative study of LightGBM, XGBoost, and GEP models in shear strength management of SFRC-SBWS. In Structures (Vol. 61, p. 106009). Elsevier.
  4. Belgiu, M., & Drăguţ, L. (2016). Random forest in remote sensing: A review of applications and future directions. ISPRS Journal of Photogrammetry and Remote Sensing, 114, 24-31.
  5. Biau, G., & Scornet, E. (2016). A random forest guided tour. Test, 25, 197-227.
  6. Cheng, Y. M., Lansivaara, T., & Wei, W. B. (2007). Two-dimensional slope stability analysis by limit equilibrium and strength reduction methods. Computers and geotechnics, 34(3), 137-150.
  7. Das, S. K., Biswal, R. K., Sivakugan, N., & Das, B. (2011). Classification of slopes and prediction of factor of safety using differential evolution neural networks. Environmental Earth Sciences, 64, 201-210.
  8. Dawson, E. M., Roth, W. H., & Drescher, A. (1999). Slope stability analysis by strength reduction. Geotechnique, 49(6), 835-840.
  9. Duncan, J. M. (1996). State of the art: limit equilibrium and finite-element analysis of slopes. Journal of Geotechnical Engineering, 122(7), 577-596.
  10. Duncan, J. M., Wright, S. G., & Brandon, T. L. (2014). Soil strength and slope stability. John Wiley & Sons.
  11. Griffiths, D. V., & Lane, P. A. (1999). Slope stability analysis by finite elements. Geotechnique, 49(3), 387-403.
  12. Huang, Y. H. (2014). Slope stability analysis by the limit equilibrium method: Fundamentals and methods. American Society of Civil Engineers.
  13. Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye,Q., & Liu, T. Y. (2017). Lightgbm: A highly efficient gradient boosting decision tree. Advances in neural information processing systems, 30.
  14. Khajehzadeh, M., Taha, M. R., El-Shafie, A., & Eslami, M. (2012). A modified gravitational search algorithm for slope stability analysis. Engineering Applications of Artificial Intelligence, 25(8), 1589-1597.
  15. Khanesar, M. A., Teshnehlab, M., & Shoorehdeli, M. A. (2007). A novel binary particle swarm optimization. In 2007 Mediterranean conference on control & automation (pp. 1-6). IEEE.
  16. Koopialipoor, M., Jahed Armaghani, D., Hedayat, A., Marto, A., & Gordan, B. (2019). Applying various hybrid intelligent systems to evaluate and predict slope stability under static and dynamic conditions. Soft Computing, 23, 5913-5929.
  17. Li, X. (2007). Finite element analysis of slope stability using a nonlinear failure criterion. Computers and Geotechnics, 34(3), 127-136.
  18. Lin, S., Zheng, H., Han, B., Li, Y., Han, C., & Li, W. (2022). Comparative performance of eight ensemble learning approaches for the development of models of slope stability prediction. Acta Geotechnica, 17(4), 1477-1502.
  19. Lin, S., Zheng, H., Han, C., Han, B., & Li, W. (2021). Evaluation and prediction of slope stability using machine learning approaches. Frontiers of Structural and Civil Engineering, 15(4), 821-833.
  20. Liu, S. Y., Shao, L. T., & Li, H. J. (2015). Slope stability analysis using the limit equilibrium method and two finite element methods. Computers and Geotechnics, 63, 291-298.
  21. Luo, Z., Bui, X. N., Nguyen, H., & Moayedi, H. (2021). A novel artificial intelligence technique for analyzing slope stability using PSO-CA model. Engineering with Computers, 37, 533-544.
  22. Matsui, T., & San, K. C. (1992). Finite element slope stability analysis by shear strength reduction technique. Soils and foundations, 32(1), 59-70.
  23. Nanehkaran, Y. A., Licai, Z., Chengyong, J., Chen, J., Anwar, S., Azarafza, M., & Derakhshani, R. (2023). Comparative analysis for slope stability by using machine learning methods. Applied Sciences, 13(3), 1555.
  24. Natekin, A., & Knoll, A. (2013). Gradient boosting machines, a tutorial. Frontiers in neurorobotics, 7, 21.
  25. Pham, B. T., Qi, C., Ho, L. S., Nguyen-Thoi, T., Al-Ansari, N., Nguyen, M. D., Lye, H.V., Le, H. V., & Prakash, I. (2020). A novel hybrid soft computing model using random forest and particle swarm optimization for estimation of undrained shear strength of soil. Sustainability, 12(6), 2218.
  26. Puri, N., Prasad, H. D., & Jain, A. (2018). Prediction of geotechnical parameters using machine learning techniques. Procedia Computer Science, 125, 509-517.
  27. Qi, C., & Tang, X. (2018). A hybrid ensemble method for improved prediction of slope stability. International Journal for Numerical and Analytical Methods in Geomechanics, 42(15), 1823-1839.
  28. Rukhaiyar, S., Alam, M. N., & Samadhiya, N. K. (2018). A PSO-ANN hybrid model for predicting factor of safety of slope. International Journal of Geotechnical Engineering, 12(6), 556-566.
  29. Sakellariou, M. G., & Ferentinou, M. D. (2005). A study of slope stability prediction using neural networks. Geotechnical & Geological Engineering, 23, 419-445.
  30. Saurabh Kumar Anuragi, D.Kishan, S.K.Saritha. (2024). Comparative Analysis of Ensemble Learning Approaches for Slope Stability Prediction, SSRG International Journal of Civil Engineering, 11 (5), pp. 168-180. https://doi.org/10.14445/23488352/IJCE-V11I5P116.
  31. Speiser, J. L., Miller, M. E., Tooze, J., & Ip, E. (2019). A comparison of random forest variable selection methods for classification prediction modeling. Expert systems with applications, 134, 93-101.
  32. Sun, X., Liu, M., & Sima, Z. (2020). A novel cryptocurrency price trend forecasting model based on LightGBM. Finance Research Letters, 32, 101084.
  33. Xue, X., Yang, X., & Chen, X. (2014). Application of a support vector machine for prediction of slope stability. Science China Technological Sciences, 57, 2379-2386.
  34. Zheng, F., Leung, Y. F., Zhu, J. B., & Jiao, Y. Y. (2019). Modified predictor-corrector solution approach for efficient discontinuous deformation analysis of jointed rock masses. International Journal for Numerical and Analytical Methods in Geomechanics, 43(2), 599-624.
  35. Zheng, H., Liu, D. F., & Li, C. G. (2005). Slope stability analysis based on elasto-plastic finite element method. International Journal for Numerical Methods in Engineering, 64(14), 1871–1888. https://doi.org/10.1002/nme.1406
  36. Zhuang, X., Zheng, F., Zheng, H., Jiao, Y. Y., Rabczuk, T., & Wriggers, P. (2021). A cover-based contact detection approach for irregular convex polygons in discontinuous deformation analysis. International Journal for Numerical and Analytical Methods in Geomechanics, 45(2), 208-233.
DOI: https://doi.org/10.2478/sjce-2025-0022 | Journal eISSN: 1338-3973 | Journal ISSN: 1210-3896
Language: English
Page range: 1 - 12
Published on: Dec 26, 2025
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Saurabh Kumar Anuragi, D. Kishan, published by Slovak University of Technology in Bratislava
This work is licensed under the Creative Commons Attribution 4.0 License.