Have a personal or library account? Click to login

References

  1. ANSYS®, 2017. Academic Teaching Mechanical and CFD, Release 17.0, Help System, ANSYS Inc, p. 600, 2017.
  2. ÁROCH R., SOKOL M., VENGLÁR M., 2016. Structural Health Monitoring of Major Danube Bridges in Bratislava, Procedia Engineering. Vol. 156,2016,pp. 24-31, ISSN 1877-7058, https://doi.org/10.1016/j.proeng.2016.08.263.
  3. CHUNMING Y. AND SIMON D. 2005. A new particle swarm optimization technique, Proceedings of - 18th Int. Conf. Syst. Eng. IICSEng 2005. Vol. 2005, no. Oct., pp. 164–169, 2005, doi: 10.1109/ICSENG.2005.9.
  4. CLERC, M., 2011. From Theory to Practice in Particle Swarm Optimization. In: Panigrahi, B.K., Shi, Y., Lim, MH. (eds) Handbook of Swarm Intelligence. Adaptation, Learning, and Optimization, vol 8. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17390-5_1
  5. CLERC M. AND KENNEDY J., 2002. The particle swarm-explosion, stability, and convergence in a multidimensional complex space, IEEE Trans. Evol. Comput. Vol. 6, no. 1, pp. 58–73, 2002, doi: 10.1109/4235.985692.
  6. ČECHÁKOVÁ V., ROSMANIT M., FOJTIK R. (2012). FEM Modeling and Experimental Tests of Timber Bridge Structure, Procedia Engineering. Vol. 40, 2012, pp. 79-84, ISSN 1877-7058, https://doi.org/10.1016/j.proeng.2012.07.059.
  7. FERRAIOLI, M., MICCOLI, L. & ABRUZZESE, D., 2018. Dynamic characterisation of a historic bell-tower using a sensitivity-based technique for model tuning. J Civil Struct Health Monit 8, 253–269 (2018). https://doi.org/10.1007/s13349-018-0272-9
  8. HASSAN R., COHANIM B., AND DE WECK O., 2005. A Comparison of Particle Swarm Optimization and the Genetic Algorithm. Vol. 2. 2005. doi: 10.2514/6.2005-1897
  9. KENNEDY, J. AND EBERHART, R., 1995. Particle Swarm Optimization. Proceedings of the IEEE International Conference on Neural Networks, 4, 1942-1948. http://dx.doi.org/10.1109/ICNN.1995.488968
  10. LI W. M., JIANG Z. H., WANG T. L., AND ZHU H. P., 2014. Optimization method based on Generalized Pattern Search Algorithm to identify bridge parameters indirectly by a passing vehicle. J. Sound Vib., Vol. 333, no. 2, pp. 364–380, 2014, doi: 10.1016/j.jsv.2013.08.021.
  11. MARTON M., SOKOL M., BEKÖ A., AND MAOSEN C., 2021. Identification of Damage on Stringers By the PSO Method, Slovak J. Civ. Eng. Vol. 29, no. 3, pp. 9–14, 2021, doi: 10.2478/sjce-2021-0016.
  12. MARWALA T., 2010. Finite-Element-Model Updating Using Computational intelligence Techniques - Applications to Structural Dynamics. Springer London, 250 pp., ISBN978-1-84996-323-7, https://doi.org/10.1007/978-1-84996-323-7.
  13. VENGLÁR M., 2018. Dynamic Tests and System Identification of Bridges. Diss. thesis, p. 129, 2018, doi: 10.1061/jsdeag.0006057
  14. OSMANCIKLI G., BAYRAKTAR A., TÜRKER T., UÇAK Ş., AND MOSALLAM A., 2015. Finite element model calibration of precast structures using ambient vibrations. Construction and Building Materials. Vol. 93, pp. 10–21, Sep. 2015, doi: 0.1016/J. CONBUILDMAT.2015.05.096.
  15. PANT M., THANGARAJ R., AND ABRAHAM A., 2008. Particle swarm based meta-heuristics for function optimization and engineering applications, Proceedings of - 7th Comput. Inf. Syst. Ind. Manag. Appl. CISIM 2008. May 2014, pp. 84–90, 2008, doi: 10.1109/CISIM.2008.33.
  16. RAHMAN MD M., NAHAR T. T., AND KIM D., 2021. FeView: Finite element model (FEM) visualization and post-processing tool for OpenSees. SoftwareX. Vol. 15, 2021, 100751, ISSN 2352-7110, https://doi.org/10.1016/j.softx.2021.100751.
  17. SALEHIZADEH S. M. A., YADMELLAT P., AND MENHAJ M. B., 2009. Local optima avoidable particle swarm optimization. Proceeding of 2009 IEEE Swarm Intell. Symp. SIS 2009, pp. 16–21, 2009, doi: 10.1109/SIS.2009.4937839.
  18. SHABBIR F. AND OMENZETTER P., 2015. Particle swarm optimization with sequential niche technique for dynamic finite element model updating, Comput. Civ. Infrastruct. Eng.s. Vol. 30, no. 5, pp. 359–375, 2015, doi: 10.1111/mice.12100.
  19. SONG X., GONG X., LI G., XIONG W., AND CAI C.S., 2022. Continuous monitoring of in-service performance of prestressed concrete continuous bridges with two strengthening measures. Construction and Building Materials,Vol. 321, 2022, 126311, ISSN 0950-0618.
  20. SOKOL M. AND VENGLAR M., 2016 . In Scale Model of the Bridge for System Identification. Procedia Eng. Vol. 161, pp. 674–679, 2016, doi: 10.1016/j.proeng.2016.08.733.
  21. SOKOL M. ET AL., 2017. Traffic response pattern of cable-stayed bridge as a comparison tool for SHM, IABSE Conf. Vancouver 2017 Eng. Futur. - Rep. pp. 191–197, 2017, doi: 10.2749/vancouver.2017.0191.
  22. TONG J., LIN B., LU Y.-W., MADI K., TAI Y.H., YATES J.R., AND DOQUET V., 2015. Near-tip strain evolution under cyclic loading: In situ experimental observation and numerical modelling. International Journal of Fatigue, Vol. 71, 2015, pp. 45-52, ISSN 0142-1123,https://doi.org/10.1016/j.ijfatigue.2014.02.013.
  23. TRAN-NGOC H., KHATIR S., DE ROECK G., BUI-TIEN T., NGUYEN-NGOC L. AND ABDEL WAHAB M., 2018. Model updating for nam O bridge using particle swarm optimization algorithm and genetic algorithm. Sensors (Switzerland), vol. 18, no. 12, 2018, doi: 10.3390/s18124131.
  24. VAN DEN BERGH F. AND ENGELBRECHT A. P., 2004. A cooperative approach to participle swam optimization, IEEE Trans. Evol. Comput. Vol. 8, no. 3, pp. 225–239, 2004, doi: 10.1109/TEVC.2004.826069.
  25. WANG H., LI A. Q., AND LI J., 2010. Progressive finite element model calibration of a long-span suspension bridge based on ambient vibration and static measurements. Eng. Struct. Vol. 32, no. 9, pp. 2546–2556, Sep. 2010, doi: 10.1016/J.ENGSTRUCT.2010.04.028
DOI: https://doi.org/10.2478/sjce-2025-0021 | Journal eISSN: 1338-3973 | Journal ISSN: 1210-3896
Language: English
Page range: 62 - 71
Published on: Sep 26, 2025
Published by: Slovak University of Technology in Bratislava
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2025 Martin Marton, Milan Sokol, Justo García-Sanz-Calcedo, Gonzalo Sánchez-Barroso, Jaime Gonzálezdomínguez, published by Slovak University of Technology in Bratislava
This work is licensed under the Creative Commons Attribution 4.0 License.