References
- AHMED, N. and D. K. SUNADA (1969). Non-linear flow in porous media. J. Hydraul. Div., 95(HY6), 1847–1858.
- AURELI, F., A. MARANZONI, P. MIGNOSA and C. ZIVERI (2008). A weighted surface-depth gradient method for the numerical integration of the 2D shallow-water equations with topography. Adv. Water Resour., 31(7), 962–974.
- BARI, R. and D. HANSEN (2002). Application of gradually-varied flow algorithms to simulate buried streams. J. Hydraul. Res., 40(6), 673–683.
- BICKLEY, W. G. (1941). Formulae for numerical differentiation. Math. Gaz., 25(263), 19–27.
- CHILTON, T. H. and A. P. COLBURN (1931). Pressure drop in packed tubes. Ind. Eng. Chem. Res., 23(8), doi:10.1021/ie50260a016. 913-919.
- DARCY, H. (1856). Les Fontaines Publiques de la Ville de Dijon: Exposition et Application des Principes à Suivre et des Formules à Employer dans les Questions de Distribution d'Eau (The Public Fountains of the City of Dijon: Exposition and Application of the Principles to be Followed and the Formulas to be Used in Questions of Water Distribution). Dalmont: Paris, France, 590–594 [in French].
- DUPUIT, J. (1863). Études Théoriques et Pratiques sur le Mouvement des Eaux dans les Canaux Découverts et a Travers les Terrains Perméables (Theoretical and Practical Studies on Water Movement in Open Channels and across Permeable Terrains). deuxième édition; Dunod: Paris, France, 229–293 [in French].
- ERGUN, S. (1952). Fluid flow through packed columns. Chem. Engrg. Progress, 48(2), 89–94.
- FERRAND, M., et al. (2017). Unsteady open boundaries for SPH using semi-analytical conditions and Riemann solver in 2D. Comput. Phys. Commun., 210, 29–44.
- FORCHHEIMER, P. (1901). Wasserbewegung durch boden (Water movement through soil). Zeits. V. deutsch. Ing., 45, 1782–1788 [in German].
- GEERTSMA, J. (1974). Estimating the coefficient of inertial resistance in fluid flow through porous media. Soc. Pet. Eng. J., 14(5), 445–450.
- GU, Z. and H. WANG (1991). Gravity waves over porous bottoms. Coast. Eng., 15(5-6), 497–524.
- HANNOURA, A. A. (1978). Numerical and Experimental Modeling of Unsteady Flow in Rockfill Embankments. Ph.D. Thesis, University of Windsor, Windsor, ON, Canada.
- HANNOURA, A. A. and J. A. MCCORQUODALE (1978). Virtual mass of coarse granular media. J. Waterw. Port Coast. Ocean Div., 104(WW2), 191–200.
- HANSEN, D. (1992). The Behavior of Flow through Rockfill Dams. Ph.D. Thesis, University of Ottawa, Ottawa, ON, Canada.
- HANSEN, D., V. K. GARGA and D. R. TOWNSEND (1995). Selection and application of a one-dimensional non-Darcy flow equation for two-dimensional flow through rockfill embankments. Can. Geotech. J., 32(2), 223–232.
- HARTEN, A., P. D. LAX and B. van LEER (1983). On upstream differencing and Godunov-type scheme for hyperbolic conservation laws. SIAM Rev. Soc. Ind. Appl. Math., 25(1), 35–61.
- HIRSCH, C. (2007). Numerical Computation of Internal and External Flows: Vol. 1 Fundamentals of Computational Fluid Dynamics. 2nd ed., Elsevier: Oxford, UK, 208–209.
- HOLMES, D. W., J. R. WILLIAMS and P. TILKE (2011). Smooth particle hydrodynamics simulations of low Reynolds number flows through porous media. Int. J. Numer. Anal. Methods Geomech., 35(4), 419–437.
- HOSSEINI, S. M. and D. M. JOY (2007). Development of an unsteady model for flow through coarse heterogeneous porous media applicable to valley fills. Int. J. River Basin Manag., 5(4), 253–265.
- IRMAY, S. (1958). On the theoretical derivation of Darcy and Forchheimer formulas. Trans. AGU, 39(4), 702–707.
- JOY, D. M. (1991). Non-linear flow in a coarse porous media. In: Proceedings of the 10th Canadian Hydrotechnical Conference, CSCE, Vancouver, BC, Canada, 29–31 May, 1, 106–115.
- KOZENY, J. (1927). Über kapillare leitung des wassers im boden (Via capillary conduction of water in the soil). Sitzungsber. Akad. Wiss. Vienna, 136, 271–306 [in German].
- LARESE, A., R. ROSSI and E. OÑATE (2015). Finite-element modeling of free-surface flow in variable porosity media. Arch. Computat. Methods Eng., 22(4), 637–653.
- LIN, P. (1998). Numerical Modeling of Breaking Waves. Ph.D. Thesis, Cornell University, Ithaca, NY, USA.
- MA, H. and D. W. RUTH (1993). The microscopic analysis of high Forchheimer number flow in porous media. Transp. Porous Media, 13, 139–160.
- MCCORQUODALE, J. A., A. A. HANNOURA and M. SAM NASSER (1978). Hydraulic conductivity of rockfill. J. Hydraul. Res., 16(2), 123–137.
- PENG, C., G. XU, W. WU, H. S. YU and C. WANG (2017). Multiphase SPH modeling of free-surface flow in porous media with variable porosity. Comput. Geotech., 81, 239–248.
- POLUBARINOVA-KOCHINA, P. Ya. (1962). Theory of Groundwater Movement. Princeton University Press: Princeton, NJ, USA, 25–26.
- PRESS, W. H., S. A. TEUKOLSKY, W. T. VETTERLING and B. P. FLANNERY (2007). Numerical Recipes in C++. 3rd ed., Cambridge University Press: Cambridge, UK, 118–119.
- RAVINDRA, G. H. R., F. G. SIGTRYGGSDÓTTIR and Ø. A. HØYDAL (2019). Non-linear flow through rockfill embankments. J. Appl. Water Eng. Res., 7(4), 247–262.
- SARKHOSH, P., A. SALAMA and Y.-C. JIN (2020). A one-dimensional semi-implicit finite volume modeling of non-inertia wave through rockfill dams. J. Hydroinform., 22(6), 1485–1505.
- SHARIF, N. H., N.-E. WIBERG and M. LEVENSTAM (2001). Free-surface flow through rockfill dams analyzed by FEM with level set approach. Comput. Mech., 27, 233–243.
- SHI, W., T. YANG and S. YU (2020). Experimental investigation on non-Darcy flow behavior of granular limestone with different porosity. J. Hydrol. Eng., 25(8), doi:10.1061/(ASCE)HE.1943-5584.0001966.
- SIDDIQUA, S., J. A. BLATZ and N. C. PRIVAT (2011). Evaluating turbulent flow in large rockfill. J. Hydraul. Eng., 137(11), 1462–1469.
- SLICHTER, C. S. (1899). Theoretical Investigations of the Motion of Ground Waters. USGS, 19th Annual Report, Part II, 295–384.
- SOARES-FRAZÃO, S. and V. GUINOT (2008). A second-order semi-implicit hybrid scheme for one-dimensional Boussinesq-type waves in rectangular channels. Int. J. Numer. Methods Fluids, 58(3), 237–261.
- SOLLITT, C. K. and R. H. CROSS (1972). Wave Reflection and Transmission at Permeable Breakwaters. R. M. Parsons Laboratory Technical Report No. 147, MIT, Boston, MA, USA.
- TISS, M. and R. D. EVANS (1989). Measurement and correlation of non-Darcy flow coefficient in consolidated porous media. J. Pet. Sci. Eng., 3(1-2), 19–33.
- van GENT, M. R. A., H. A. H. PETIT and P. van den BOSCH (1994). SKYLLA: Wave Motion in and on Coastal Structures - Implementation and Verification of Flow on and in Permeable Structures. Delft Hydraulics Report H1780, Delft University of Technology, Delft, The Netherlands.
- van GENT, M. R. A. (1995a). Porous flow through rubble-mound material. J. Waterw. Port Coast. Ocean Eng., 121(3), 176–181.
- van GENT, M. R. A. (1995b). Wave Interaction with Permeable Coastal Structures. Ph.D. Thesis, Delft University of Technology, Delft, The Netherlands.
- WHITAKER, S. (1996). The Forchheimer equation: A theoretical development. Transp. Porous Media, 25, 27–61.
- WRIGHT, D. E. (1968). Non-linear flow through granular media. J. Hydraul. Div., 94(HY4), 851–872.
- YAMAMOTO, S. and H. DAIGUJI (1993). Higher-order accurate upwind schemes for solving the compressible Euler and Navier-Stokes equations. Comput. Fluids, 22(2–3), 259–270.
- ZERIHUN, Y. T. (2018). Extension of the Dupuit–Forchheimer model for non-hydrostatic flows in unconfined aquifers. Fluids, 3(2), doi:10.3390/fluids3020042.
- ZERIHUN, Y. T. (2019). On steady two-dimensional free-surface flows with spatially-varied discharges. Slovak J. Civ. Eng., 27(3), 1–11.
- ZERIHUN, Y. T. (2020a). A numerical investigation of transient groundwater flows with a phreatic surface along complex hillslopes. Slovak J. Civ. Eng., 28(1), 11–19.
- ZERIHUN, Y. T. (2020b). Free flow and discharge characteristics of trapezoidal-shaped weirs. Fluids, 5(4), doi:10.3390/fluids5040238.
- ZERIHUN, Y. T. (2023a). Two-dimensional unconfined seepage flow toward a highway cut slope. Acta Hydrotech., 36(65), 95–109.
- ZERIHUN, Y. T. (2023b). On the hydraulic characteristics of submerged flow over trapezoidal-shaped weirs. Arch. Hydro-Eng. Environ. Mech., 70(1), 1–16.
- ZERIHUN, Y. T. (2024). Numerical modeling of sediment transport and bed evolution in nonuniform open-channel flows. Arch. Hydro-Eng. Environ. Mech., 71(1), 1–26.