Have a personal or library account? Click to login
Investigating the Problems of Unconfined Non-Darcy Flows through Embankment Dams using a Depth-Averaged Model Cover

Investigating the Problems of Unconfined Non-Darcy Flows through Embankment Dams using a Depth-Averaged Model

Open Access
|Jul 2025

References

  1. AHMED, N. and D. K. SUNADA (1969). Non-linear flow in porous media. J. Hydraul. Div., 95(HY6), 1847–1858.
  2. AURELI, F., A. MARANZONI, P. MIGNOSA and C. ZIVERI (2008). A weighted surface-depth gradient method for the numerical integration of the 2D shallow-water equations with topography. Adv. Water Resour., 31(7), 962–974.
  3. BARI, R. and D. HANSEN (2002). Application of gradually-varied flow algorithms to simulate buried streams. J. Hydraul. Res., 40(6), 673–683.
  4. BICKLEY, W. G. (1941). Formulae for numerical differentiation. Math. Gaz., 25(263), 19–27.
  5. CHILTON, T. H. and A. P. COLBURN (1931). Pressure drop in packed tubes. Ind. Eng. Chem. Res., 23(8), doi:10.1021/ie50260a016. 913-919.
  6. DARCY, H. (1856). Les Fontaines Publiques de la Ville de Dijon: Exposition et Application des Principes à Suivre et des Formules à Employer dans les Questions de Distribution d'Eau (The Public Fountains of the City of Dijon: Exposition and Application of the Principles to be Followed and the Formulas to be Used in Questions of Water Distribution). Dalmont: Paris, France, 590–594 [in French].
  7. DUPUIT, J. (1863). Études Théoriques et Pratiques sur le Mouvement des Eaux dans les Canaux Découverts et a Travers les Terrains Perméables (Theoretical and Practical Studies on Water Movement in Open Channels and across Permeable Terrains). deuxième édition; Dunod: Paris, France, 229–293 [in French].
  8. ERGUN, S. (1952). Fluid flow through packed columns. Chem. Engrg. Progress, 48(2), 89–94.
  9. FERRAND, M., et al. (2017). Unsteady open boundaries for SPH using semi-analytical conditions and Riemann solver in 2D. Comput. Phys. Commun., 210, 29–44.
  10. FORCHHEIMER, P. (1901). Wasserbewegung durch boden (Water movement through soil). Zeits. V. deutsch. Ing., 45, 1782–1788 [in German].
  11. GEERTSMA, J. (1974). Estimating the coefficient of inertial resistance in fluid flow through porous media. Soc. Pet. Eng. J., 14(5), 445–450.
  12. GU, Z. and H. WANG (1991). Gravity waves over porous bottoms. Coast. Eng., 15(5-6), 497–524.
  13. HANNOURA, A. A. (1978). Numerical and Experimental Modeling of Unsteady Flow in Rockfill Embankments. Ph.D. Thesis, University of Windsor, Windsor, ON, Canada.
  14. HANNOURA, A. A. and J. A. MCCORQUODALE (1978). Virtual mass of coarse granular media. J. Waterw. Port Coast. Ocean Div., 104(WW2), 191–200.
  15. HANSEN, D. (1992). The Behavior of Flow through Rockfill Dams. Ph.D. Thesis, University of Ottawa, Ottawa, ON, Canada.
  16. HANSEN, D., V. K. GARGA and D. R. TOWNSEND (1995). Selection and application of a one-dimensional non-Darcy flow equation for two-dimensional flow through rockfill embankments. Can. Geotech. J., 32(2), 223–232.
  17. HARTEN, A., P. D. LAX and B. van LEER (1983). On upstream differencing and Godunov-type scheme for hyperbolic conservation laws. SIAM Rev. Soc. Ind. Appl. Math., 25(1), 35–61.
  18. HIRSCH, C. (2007). Numerical Computation of Internal and External Flows: Vol. 1 Fundamentals of Computational Fluid Dynamics. 2nd ed., Elsevier: Oxford, UK, 208–209.
  19. HOLMES, D. W., J. R. WILLIAMS and P. TILKE (2011). Smooth particle hydrodynamics simulations of low Reynolds number flows through porous media. Int. J. Numer. Anal. Methods Geomech., 35(4), 419–437.
  20. HOSSEINI, S. M. and D. M. JOY (2007). Development of an unsteady model for flow through coarse heterogeneous porous media applicable to valley fills. Int. J. River Basin Manag., 5(4), 253–265.
  21. IRMAY, S. (1958). On the theoretical derivation of Darcy and Forchheimer formulas. Trans. AGU, 39(4), 702–707.
  22. JOY, D. M. (1991). Non-linear flow in a coarse porous media. In: Proceedings of the 10th Canadian Hydrotechnical Conference, CSCE, Vancouver, BC, Canada, 29–31 May, 1, 106–115.
  23. KOZENY, J. (1927). Über kapillare leitung des wassers im boden (Via capillary conduction of water in the soil). Sitzungsber. Akad. Wiss. Vienna, 136, 271–306 [in German].
  24. LARESE, A., R. ROSSI and E. OÑATE (2015). Finite-element modeling of free-surface flow in variable porosity media. Arch. Computat. Methods Eng., 22(4), 637–653.
  25. LIN, P. (1998). Numerical Modeling of Breaking Waves. Ph.D. Thesis, Cornell University, Ithaca, NY, USA.
  26. MA, H. and D. W. RUTH (1993). The microscopic analysis of high Forchheimer number flow in porous media. Transp. Porous Media, 13, 139–160.
  27. MCCORQUODALE, J. A., A. A. HANNOURA and M. SAM NASSER (1978). Hydraulic conductivity of rockfill. J. Hydraul. Res., 16(2), 123–137.
  28. PENG, C., G. XU, W. WU, H. S. YU and C. WANG (2017). Multiphase SPH modeling of free-surface flow in porous media with variable porosity. Comput. Geotech., 81, 239–248.
  29. POLUBARINOVA-KOCHINA, P. Ya. (1962). Theory of Groundwater Movement. Princeton University Press: Princeton, NJ, USA, 25–26.
  30. PRESS, W. H., S. A. TEUKOLSKY, W. T. VETTERLING and B. P. FLANNERY (2007). Numerical Recipes in C++. 3rd ed., Cambridge University Press: Cambridge, UK, 118–119.
  31. RAVINDRA, G. H. R., F. G. SIGTRYGGSDÓTTIR and Ø. A. HØYDAL (2019). Non-linear flow through rockfill embankments. J. Appl. Water Eng. Res., 7(4), 247–262.
  32. SARKHOSH, P., A. SALAMA and Y.-C. JIN (2020). A one-dimensional semi-implicit finite volume modeling of non-inertia wave through rockfill dams. J. Hydroinform., 22(6), 1485–1505.
  33. SHARIF, N. H., N.-E. WIBERG and M. LEVENSTAM (2001). Free-surface flow through rockfill dams analyzed by FEM with level set approach. Comput. Mech., 27, 233–243.
  34. SHI, W., T. YANG and S. YU (2020). Experimental investigation on non-Darcy flow behavior of granular limestone with different porosity. J. Hydrol. Eng., 25(8), doi:10.1061/(ASCE)HE.1943-5584.0001966.
  35. SIDDIQUA, S., J. A. BLATZ and N. C. PRIVAT (2011). Evaluating turbulent flow in large rockfill. J. Hydraul. Eng., 137(11), 1462–1469.
  36. SLICHTER, C. S. (1899). Theoretical Investigations of the Motion of Ground Waters. USGS, 19th Annual Report, Part II, 295–384.
  37. SOARES-FRAZÃO, S. and V. GUINOT (2008). A second-order semi-implicit hybrid scheme for one-dimensional Boussinesq-type waves in rectangular channels. Int. J. Numer. Methods Fluids, 58(3), 237–261.
  38. SOLLITT, C. K. and R. H. CROSS (1972). Wave Reflection and Transmission at Permeable Breakwaters. R. M. Parsons Laboratory Technical Report No. 147, MIT, Boston, MA, USA.
  39. TISS, M. and R. D. EVANS (1989). Measurement and correlation of non-Darcy flow coefficient in consolidated porous media. J. Pet. Sci. Eng., 3(1-2), 19–33.
  40. van GENT, M. R. A., H. A. H. PETIT and P. van den BOSCH (1994). SKYLLA: Wave Motion in and on Coastal Structures - Implementation and Verification of Flow on and in Permeable Structures. Delft Hydraulics Report H1780, Delft University of Technology, Delft, The Netherlands.
  41. van GENT, M. R. A. (1995a). Porous flow through rubble-mound material. J. Waterw. Port Coast. Ocean Eng., 121(3), 176–181.
  42. van GENT, M. R. A. (1995b). Wave Interaction with Permeable Coastal Structures. Ph.D. Thesis, Delft University of Technology, Delft, The Netherlands.
  43. WHITAKER, S. (1996). The Forchheimer equation: A theoretical development. Transp. Porous Media, 25, 27–61.
  44. WRIGHT, D. E. (1968). Non-linear flow through granular media. J. Hydraul. Div., 94(HY4), 851–872.
  45. YAMAMOTO, S. and H. DAIGUJI (1993). Higher-order accurate upwind schemes for solving the compressible Euler and Navier-Stokes equations. Comput. Fluids, 22(2–3), 259–270.
  46. ZERIHUN, Y. T. (2018). Extension of the Dupuit–Forchheimer model for non-hydrostatic flows in unconfined aquifers. Fluids, 3(2), doi:10.3390/fluids3020042.
  47. ZERIHUN, Y. T. (2019). On steady two-dimensional free-surface flows with spatially-varied discharges. Slovak J. Civ. Eng., 27(3), 1–11.
  48. ZERIHUN, Y. T. (2020a). A numerical investigation of transient groundwater flows with a phreatic surface along complex hillslopes. Slovak J. Civ. Eng., 28(1), 11–19.
  49. ZERIHUN, Y. T. (2020b). Free flow and discharge characteristics of trapezoidal-shaped weirs. Fluids, 5(4), doi:10.3390/fluids5040238.
  50. ZERIHUN, Y. T. (2023a). Two-dimensional unconfined seepage flow toward a highway cut slope. Acta Hydrotech., 36(65), 95–109.
  51. ZERIHUN, Y. T. (2023b). On the hydraulic characteristics of submerged flow over trapezoidal-shaped weirs. Arch. Hydro-Eng. Environ. Mech., 70(1), 1–16.
  52. ZERIHUN, Y. T. (2024). Numerical modeling of sediment transport and bed evolution in nonuniform open-channel flows. Arch. Hydro-Eng. Environ. Mech., 71(1), 1–26.
DOI: https://doi.org/10.2478/sjce-2025-0010 | Journal eISSN: 1338-3973 | Journal ISSN: 1210-3896
Language: English
Page range: 36 - 45
Published on: Jul 5, 2025
Published by: Slovak University of Technology in Bratislava
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Yebegaeshet T. Zerihun, published by Slovak University of Technology in Bratislava
This work is licensed under the Creative Commons Attribution 4.0 License.