References
- Alena Pribulová, Peter Futáš, & Dana Baricová. (2016). Processing and utilization of metallurgical slags. Production Engineering Archives, 11(2), 02–05.
- Anurag, Kumar, R., Goyal, S., & Srivastava, A. (2021). A comprehensive study on the influence of supplementary cementitious materials on physico-mechanical, microstructural and durability properties of low carbon cement composites. Powder Technology, 394, 645–668. https://doi.org/https://doi.org/10.1016/j.powtec.2021.08.081
- Caijun, S. (2004). Steel Slag—Its Production, Processing, Characteristics, and Cementitious Properties. Journal of Materials in Civil Engineering, 16(3), 230–236. https://doi.org/10.1061/(ASCE)0899-1561(2004)16:3(230)
- Chen, S., Teng, Y., Zhang, Y., Leung, C. K. Y., & Pan, W. (2023). Reducing embodied carbon in concrete materials: A state-of-the-art review. Resources, Conservation and Recycling, 188, 106653. https://doi.org/https://doi.org/10.1016/j.resconrec.2022.106653
- Chen, W., & Brouwers, H. J. H. (2007). The hydration of slag, part 1: reaction models for alkali-activated slag. Journal of Materials Science, 42(2), 428–443. https://doi.org/10.1007/s10853-006-0873-2
- Cultrone, G., Sebastián, E., & Huertas, M. O. (2005). Forced and natural carbonation of lime-based mortars with and without additives: Mineralogical and textural changes. Cement and Concrete Research, 35(12), 2278–2289. https://doi.org/https://doi.org/10.1016/j.cemconres.2004.12.012
- Demir, I. (2006). An investigation on the production of construction brick with processed waste tea. Building and Environment, 41(9), 1274–1278. https://doi.org/https://doi.org/10.1016/j.buildenv.2005.05.004
- Duan, P., Yan, C., & Zhou, W. (2017). Compressive strength and microstructure of fly ash based geopolymer blended with silica fume under thermal cycle. Cement and Concrete Composites, 78, 108–119. https://doi.org/https://doi.org/10.1016/j.cemconcomp.2017.01.009
- El-Mahllawy, M. S. (2008). Characteristics of acid resisting bricks made from quarry residues and waste steel slag. Construction and Building Materials, 22(8), 1887–1896. https://doi.org/https://doi.org/10.1016/j.conbuildmat.2007.04.007
- Fatih, T., & Ümit, A. (2001). Utilization of Fly Ash in Manufacturing of Building Bricks. http://www.flyash.info
- Fiala, J., Mikolas, M., & Krejsova, K. (2019). Full Brick, History and Future. IOP Conference Series: Earth and Environmental Science, 221(1), 012139. https://doi.org/10.1088/1755-1315/221/1/012139
- Gencel, O., Munir, M. J., Kazmi, S. M. S., Sutcu, M., Erdogmus, E., Velasco, P. M., & Quesada, D. E. (2021). Recycling industrial slags in production of fired clay bricks for sustainable manufacturing. Ceramics International, 47(21), 30425–30438. https://doi.org/https://doi.org/10.1016/j.ceramint.2021.07.222
- Gesoğlu, M., Güneyisi, E., & Özbay, E. (2009). Properties of self-compacting concretes made with binary, ternary, and quaternary cementitious blends of fly ash, blast furnace slag, and silica fume. Construction and Building Materials, 23(5), 1847–1854. https://doi.org/https://doi.org/10.1016/j.conbuildmat.2008.09.015
- Goodarzi, F. (2006). Characteristics and composition of fly ash from Canadian coal-fired power plants. Fuel, 85(10), 1418–1427. https://doi.org/https://doi.org/10.1016/j.fuel.2005.11.022
- Guo, J., Bao, Y., & Wang, M. (2018). Steel slag in China: Treatment, recycling, and management. Waste Management, 78, 318–330. https://doi.org/https://doi.org/10.1016/j.wasman.2018.04.045
- Hemalatha, T., & Ramaswamy, A. (2017). A review on fly ash characteristics – Towards promoting high volume utilization in developing sustainable concrete. Journal of Cleaner Production, 147, 546–559. https://doi.org/https://doi.org/10.1016/j.jclepro.2017.01.114
- Jagadish, K. S. (2007). Building with Stabilized Mud. I.K. International Publishing House Pvt. Limited. https://books.google.com.pk/books?id=LUm7J-H62k8C
- Jing, W., Jiang, J., Ding, S., & Duan, P. (2020). Hydration and Microstructure of Steel Slag as Cementitious Material and Fine Aggregate in Mortar. Molecules, 25(19), 4456. https://doi.org/10.3390/molecules25194456
- Joshi, R. C., & Lohita, R. P. (1997). Fly Ash in Concrete: Production, Properties and Uses. Taylor & Francis. https://books.google.com.pk/books?id=8ITxm7zHul4C
- Kalaw, M., Culaba, A., Hinode, H., Kurniawan, W., Gallardo, S., & Promentilla, M. (2016). Optimizing and Characterizing Geopolymers from Ternary Blend of Philippine Coal Fly Ash, Coal Bottom Ash and Rice Hull Ash. Materials, 9(7), 580. https://doi.org/10.3390/ma9070580
- Karayannis, V., Moutsatsou, A., Domopoulou, A., Katsika, E., Drossou, C., & Baklavaridis, A. (2017). Fired ceramics 100% from lignite fly ash and waste glass cullet mixtures. Journal of Building Engineering, 14, 1–6. https://doi.org/https://doi.org/10.1016/j.jobe.2017.09.006
- Koukouzas, N., Ketikidis, C., Itskos, G., Spiliotis, X., Karayannis, V., & Papapolymerou, G. (2011). Synthesis of CFB-Coal Fly Ash Clay Bricks and Their Characterisation. Waste and Biomass Valorization, 2(1), 87–94. https://doi.org/10.1007/s12649-010-9055-1
- Lim, J. W., Chew, L. H., Choong, T. S. Y., Tezara, C., & Yazdi, M. H. (2016). Utilizing steel slag in environmental application - An overview. IOP Conference Series: Earth and Environmental Science, 36(1), 012067. https://doi.org/10.1088/1755-1315/36/1/012067
- Lozano-Miralles, J., Hermoso-Orzáez, M., Martínez-García, C., & Rojas-Sola, J. (2018). Comparative Study on the Environmental Impact of Traditional Clay Bricks Mixed with Organic Waste Using Life Cycle Analysis. Sustainability, 10(8), 2917. https://doi.org/10.3390/su10082917
- Nath, P., & Sarker, P. K. (2014). Effect of GGBFS on setting, workability and early strength properties of fly ash geopolymer concrete cured in ambient condition. Construction and Building Materials, 66, 163–171. https://doi.org/https://doi.org/10.1016/j.conbuildmat.2014.05.080
- Nim, A., & Meshram, K. (2020). IMPACT OF ECO FRIENDLY BLAST FURNACE SLAG ON PRODUCTION OF BUILDING BLOCKS. Stavební Obzor - Civil Engineering Journal, 29(4). https://doi.org/10.14311/CEJ.2020.04.0049
- Omur, T., Kabay, N., Miyan, N., Özkan, H., & Özkan, Ç. (2022). The effect of alkaline activators and sand ratio on the physico-mechanical properties of blast furnace slag based mortars. Journal of Building Engineering, 58, 104998. https://doi.org/https://doi.org/10.1016/j.jobe.2022.104998
- Pandey, D., Chhimwal, M., & Srivastava, R. K. (2022). Engineered Biochar as Construction Material. In S. Ramola, D. Mohan, O. Masek, A. Méndez, & T. Tsubota (Eds.), Engineered Biochar: Fundamentals, Preparation, Characterization and Applications (pp. 303–318). Springer Nature Singapore. https://doi.org/10.1007/978-981-19-2488-0_16
- Pimraksa, K., Chindaprasirt, P., Rungchet, A., Sagoe-Crentsil, K., & Sato, T. (2011). Lightweight geopolymer made of highly porous siliceous materials with various Na2O/Al2O3 and SiO2/Al2O3 ratios. Materials Science and Engineering: A, 528(21), 6616–6623. https://doi.org/https://doi.org/10.1016/j.msea.2011.04.044
- Pitarch, A. M., Reig, L., Tomás, A. E., & López, F. J. (2019). Effect of Tiles, Bricks and Ceramic Sanitary-Ware Recycled Aggregates on Structural Concrete Properties. Waste and Biomass Valorization, 10(6), 1779–1793. https://doi.org/10.1007/s12649-017-0154-0
- Poon, C.-S., Azhar, S., Anson, M., & Wong, Y.-L. (2001). Comparison of the strength and durability performance of normal- and high-strength pozzolanic concretes at elevated temperatures. Cement and Concrete Research, 31(9), 1291–1300. https://doi.org/https://doi.org/10.1016/S0008-8846(01)00580-4
- Priya, P. K., Vanitha, S., & Meyyappan, P. (2020). Utilization of waste for building materials – a review. IOP Conference Series: Materials Science and Engineering, 955(1), 012048. https://doi.org/10.1088/1757-899X/955/1/012048
- Rashad, A. M. (2014). A comprehensive overview about the influence of different admixtures and additives on the properties of alkali-activated fly ash. Materials & Design, 53, 1005–1025. https://doi.org/https://doi.org/10.1016/j.matdes.2013.07.074
- Siddique, R. (2007). Waste Materials and By-Products in Concrete. Springer Berlin Heidelberg. https://books.google.com.pk/books?id=djvSzSRqtQIC
- Steven H. Kosmatka, & Michelle L.Wilson. (2011). Design and Control of Concrete Mixtures (5th ed.). Portland Cement Association.
- Tossavainen, M., Engstrom, F., Yang, Q., Menad, N., Lidstrom Larsson, M., & Bjorkman, B. (2007). Characteristics of steel slag under different cooling conditions. Waste Management, 27(10), 1335–1344. https://doi.org/https://doi.org/10.1016/j.wasman.2006.08.002
- Vaverka, J., & Sakurai, K. (2014). Quantitative Determination of Free Lime Amount in Steelmaking Slag by X-ray Diffraction. ISIJ International, 54(6), 1334–1337. https://doi.org/10.2355/isijinternational.54.1334
- Wang, H., Li, H., & Yan, F. (2005). Synthesis and mechanical properties of metakaolinite-based geopolymer. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 268(1), 1–6. https://doi.org/https://doi.org/10.1016/j.colsurfa.2005.01.016
- Wang, L., Sun, H., Sun, Z., & Ma, E. (2016). New technology and application of brick making with coal fly ash. Journal of Material Cycles and Waste Management, 18(4), 763–770. https://doi.org/10.1007/s10163-015-0368-9
- Wang, S., Wang, C., Wang, Q., Liu, Z., Qian, W., Jin, C., Chen, L., & Li, L. (2018). Study on Cementitious Properties and Hydration Characteristics of Steel Slag. Polish Journal of Environmental Studies, 27(1), 357–364. https://doi.org/10.15244/pjoes/74133
- Ward, C. R., & French, D. (2006). Determination of glass content and estimation of glass composition in fly ash using quantitative X-ray diffractometry. Fuel, 85(16), 2268–2277. https://doi.org/https://doi.org/10.1016/j.fuel.2005.12.026
- Yüksek, İ., Öztaş, S. K., & Tahtalı, G. (2020). The evaluation of fired clay brick production in terms of energy efficiency: a case study in Turkey. Energy Efficiency, 13(7), 1473–1483. https://doi.org/10.1007/s12053-020-09896-y
- Zhang, L. (2013). Production of bricks from waste materials – A review. Construction and Building Materials, 47, 643–655. https://doi.org/https://doi.org/10.1016/j.conbuildmat.2013.05.043
- Zhang, P., Gao, Z., Wang, J., Guo, J., Hu, S., & Ling, Y. (2020). Properties of fresh and hardened fly ash/slag based geopolymer concrete: A review. Journal of Cleaner Production, 270, 122389. https://doi.org/https://doi.org/10.1016/j.jclepro.2020.122389