Have a personal or library account? Click to login
An Investigation of the Durability and Sustainability of Fly Ash and Steel Slag Based Bricks Cover

An Investigation of the Durability and Sustainability of Fly Ash and Steel Slag Based Bricks

By: Muhammad Numan  
Open Access
|Jul 2025

References

  1. Alena Pribulová, Peter Futáš, & Dana Baricová. (2016). Processing and utilization of metallurgical slags. Production Engineering Archives, 11(2), 02–05.
  2. Anurag, Kumar, R., Goyal, S., & Srivastava, A. (2021). A comprehensive study on the influence of supplementary cementitious materials on physico-mechanical, microstructural and durability properties of low carbon cement composites. Powder Technology, 394, 645–668. https://doi.org/https://doi.org/10.1016/j.powtec.2021.08.081
  3. Caijun, S. (2004). Steel Slag—Its Production, Processing, Characteristics, and Cementitious Properties. Journal of Materials in Civil Engineering, 16(3), 230–236. https://doi.org/10.1061/(ASCE)0899-1561(2004)16:3(230)
  4. Chen, S., Teng, Y., Zhang, Y., Leung, C. K. Y., & Pan, W. (2023). Reducing embodied carbon in concrete materials: A state-of-the-art review. Resources, Conservation and Recycling, 188, 106653. https://doi.org/https://doi.org/10.1016/j.resconrec.2022.106653
  5. Chen, W., & Brouwers, H. J. H. (2007). The hydration of slag, part 1: reaction models for alkali-activated slag. Journal of Materials Science, 42(2), 428–443. https://doi.org/10.1007/s10853-006-0873-2
  6. Cultrone, G., Sebastián, E., & Huertas, M. O. (2005). Forced and natural carbonation of lime-based mortars with and without additives: Mineralogical and textural changes. Cement and Concrete Research, 35(12), 2278–2289. https://doi.org/https://doi.org/10.1016/j.cemconres.2004.12.012
  7. Demir, I. (2006). An investigation on the production of construction brick with processed waste tea. Building and Environment, 41(9), 1274–1278. https://doi.org/https://doi.org/10.1016/j.buildenv.2005.05.004
  8. Duan, P., Yan, C., & Zhou, W. (2017). Compressive strength and microstructure of fly ash based geopolymer blended with silica fume under thermal cycle. Cement and Concrete Composites, 78, 108–119. https://doi.org/https://doi.org/10.1016/j.cemconcomp.2017.01.009
  9. El-Mahllawy, M. S. (2008). Characteristics of acid resisting bricks made from quarry residues and waste steel slag. Construction and Building Materials, 22(8), 1887–1896. https://doi.org/https://doi.org/10.1016/j.conbuildmat.2007.04.007
  10. Fatih, T., & Ümit, A. (2001). Utilization of Fly Ash in Manufacturing of Building Bricks. http://www.flyash.info
  11. Fiala, J., Mikolas, M., & Krejsova, K. (2019). Full Brick, History and Future. IOP Conference Series: Earth and Environmental Science, 221(1), 012139. https://doi.org/10.1088/1755-1315/221/1/012139
  12. Gencel, O., Munir, M. J., Kazmi, S. M. S., Sutcu, M., Erdogmus, E., Velasco, P. M., & Quesada, D. E. (2021). Recycling industrial slags in production of fired clay bricks for sustainable manufacturing. Ceramics International, 47(21), 30425–30438. https://doi.org/https://doi.org/10.1016/j.ceramint.2021.07.222
  13. Gesoğlu, M., Güneyisi, E., & Özbay, E. (2009). Properties of self-compacting concretes made with binary, ternary, and quaternary cementitious blends of fly ash, blast furnace slag, and silica fume. Construction and Building Materials, 23(5), 1847–1854. https://doi.org/https://doi.org/10.1016/j.conbuildmat.2008.09.015
  14. Goodarzi, F. (2006). Characteristics and composition of fly ash from Canadian coal-fired power plants. Fuel, 85(10), 1418–1427. https://doi.org/https://doi.org/10.1016/j.fuel.2005.11.022
  15. Guo, J., Bao, Y., & Wang, M. (2018). Steel slag in China: Treatment, recycling, and management. Waste Management, 78, 318–330. https://doi.org/https://doi.org/10.1016/j.wasman.2018.04.045
  16. Hemalatha, T., & Ramaswamy, A. (2017). A review on fly ash characteristics – Towards promoting high volume utilization in developing sustainable concrete. Journal of Cleaner Production, 147, 546–559. https://doi.org/https://doi.org/10.1016/j.jclepro.2017.01.114
  17. Jagadish, K. S. (2007). Building with Stabilized Mud. I.K. International Publishing House Pvt. Limited. https://books.google.com.pk/books?id=LUm7J-H62k8C
  18. Jing, W., Jiang, J., Ding, S., & Duan, P. (2020). Hydration and Microstructure of Steel Slag as Cementitious Material and Fine Aggregate in Mortar. Molecules, 25(19), 4456. https://doi.org/10.3390/molecules25194456
  19. Joshi, R. C., & Lohita, R. P. (1997). Fly Ash in Concrete: Production, Properties and Uses. Taylor & Francis. https://books.google.com.pk/books?id=8ITxm7zHul4C
  20. Kalaw, M., Culaba, A., Hinode, H., Kurniawan, W., Gallardo, S., & Promentilla, M. (2016). Optimizing and Characterizing Geopolymers from Ternary Blend of Philippine Coal Fly Ash, Coal Bottom Ash and Rice Hull Ash. Materials, 9(7), 580. https://doi.org/10.3390/ma9070580
  21. Karayannis, V., Moutsatsou, A., Domopoulou, A., Katsika, E., Drossou, C., & Baklavaridis, A. (2017). Fired ceramics 100% from lignite fly ash and waste glass cullet mixtures. Journal of Building Engineering, 14, 1–6. https://doi.org/https://doi.org/10.1016/j.jobe.2017.09.006
  22. Koukouzas, N., Ketikidis, C., Itskos, G., Spiliotis, X., Karayannis, V., & Papapolymerou, G. (2011). Synthesis of CFB-Coal Fly Ash Clay Bricks and Their Characterisation. Waste and Biomass Valorization, 2(1), 87–94. https://doi.org/10.1007/s12649-010-9055-1
  23. Lim, J. W., Chew, L. H., Choong, T. S. Y., Tezara, C., & Yazdi, M. H. (2016). Utilizing steel slag in environmental application - An overview. IOP Conference Series: Earth and Environmental Science, 36(1), 012067. https://doi.org/10.1088/1755-1315/36/1/012067
  24. Lozano-Miralles, J., Hermoso-Orzáez, M., Martínez-García, C., & Rojas-Sola, J. (2018). Comparative Study on the Environmental Impact of Traditional Clay Bricks Mixed with Organic Waste Using Life Cycle Analysis. Sustainability, 10(8), 2917. https://doi.org/10.3390/su10082917
  25. Nath, P., & Sarker, P. K. (2014). Effect of GGBFS on setting, workability and early strength properties of fly ash geopolymer concrete cured in ambient condition. Construction and Building Materials, 66, 163–171. https://doi.org/https://doi.org/10.1016/j.conbuildmat.2014.05.080
  26. Nim, A., & Meshram, K. (2020). IMPACT OF ECO FRIENDLY BLAST FURNACE SLAG ON PRODUCTION OF BUILDING BLOCKS. Stavební Obzor - Civil Engineering Journal, 29(4). https://doi.org/10.14311/CEJ.2020.04.0049
  27. Omur, T., Kabay, N., Miyan, N., Özkan, H., & Özkan, Ç. (2022). The effect of alkaline activators and sand ratio on the physico-mechanical properties of blast furnace slag based mortars. Journal of Building Engineering, 58, 104998. https://doi.org/https://doi.org/10.1016/j.jobe.2022.104998
  28. Pandey, D., Chhimwal, M., & Srivastava, R. K. (2022). Engineered Biochar as Construction Material. In S. Ramola, D. Mohan, O. Masek, A. Méndez, & T. Tsubota (Eds.), Engineered Biochar: Fundamentals, Preparation, Characterization and Applications (pp. 303–318). Springer Nature Singapore. https://doi.org/10.1007/978-981-19-2488-0_16
  29. Pimraksa, K., Chindaprasirt, P., Rungchet, A., Sagoe-Crentsil, K., & Sato, T. (2011). Lightweight geopolymer made of highly porous siliceous materials with various Na2O/Al2O3 and SiO2/Al2O3 ratios. Materials Science and Engineering: A, 528(21), 6616–6623. https://doi.org/https://doi.org/10.1016/j.msea.2011.04.044
  30. Pitarch, A. M., Reig, L., Tomás, A. E., & López, F. J. (2019). Effect of Tiles, Bricks and Ceramic Sanitary-Ware Recycled Aggregates on Structural Concrete Properties. Waste and Biomass Valorization, 10(6), 1779–1793. https://doi.org/10.1007/s12649-017-0154-0
  31. Poon, C.-S., Azhar, S., Anson, M., & Wong, Y.-L. (2001). Comparison of the strength and durability performance of normal- and high-strength pozzolanic concretes at elevated temperatures. Cement and Concrete Research, 31(9), 1291–1300. https://doi.org/https://doi.org/10.1016/S0008-8846(01)00580-4
  32. Priya, P. K., Vanitha, S., & Meyyappan, P. (2020). Utilization of waste for building materials – a review. IOP Conference Series: Materials Science and Engineering, 955(1), 012048. https://doi.org/10.1088/1757-899X/955/1/012048
  33. Rashad, A. M. (2014). A comprehensive overview about the influence of different admixtures and additives on the properties of alkali-activated fly ash. Materials & Design, 53, 1005–1025. https://doi.org/https://doi.org/10.1016/j.matdes.2013.07.074
  34. Siddique, R. (2007). Waste Materials and By-Products in Concrete. Springer Berlin Heidelberg. https://books.google.com.pk/books?id=djvSzSRqtQIC
  35. Steven H. Kosmatka, & Michelle L.Wilson. (2011). Design and Control of Concrete Mixtures (5th ed.). Portland Cement Association.
  36. Tossavainen, M., Engstrom, F., Yang, Q., Menad, N., Lidstrom Larsson, M., & Bjorkman, B. (2007). Characteristics of steel slag under different cooling conditions. Waste Management, 27(10), 1335–1344. https://doi.org/https://doi.org/10.1016/j.wasman.2006.08.002
  37. Vaverka, J., & Sakurai, K. (2014). Quantitative Determination of Free Lime Amount in Steelmaking Slag by X-ray Diffraction. ISIJ International, 54(6), 1334–1337. https://doi.org/10.2355/isijinternational.54.1334
  38. Wang, H., Li, H., & Yan, F. (2005). Synthesis and mechanical properties of metakaolinite-based geopolymer. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 268(1), 1–6. https://doi.org/https://doi.org/10.1016/j.colsurfa.2005.01.016
  39. Wang, L., Sun, H., Sun, Z., & Ma, E. (2016). New technology and application of brick making with coal fly ash. Journal of Material Cycles and Waste Management, 18(4), 763–770. https://doi.org/10.1007/s10163-015-0368-9
  40. Wang, S., Wang, C., Wang, Q., Liu, Z., Qian, W., Jin, C., Chen, L., & Li, L. (2018). Study on Cementitious Properties and Hydration Characteristics of Steel Slag. Polish Journal of Environmental Studies, 27(1), 357–364. https://doi.org/10.15244/pjoes/74133
  41. Ward, C. R., & French, D. (2006). Determination of glass content and estimation of glass composition in fly ash using quantitative X-ray diffractometry. Fuel, 85(16), 2268–2277. https://doi.org/https://doi.org/10.1016/j.fuel.2005.12.026
  42. Yüksek, İ., Öztaş, S. K., & Tahtalı, G. (2020). The evaluation of fired clay brick production in terms of energy efficiency: a case study in Turkey. Energy Efficiency, 13(7), 1473–1483. https://doi.org/10.1007/s12053-020-09896-y
  43. Zhang, L. (2013). Production of bricks from waste materials – A review. Construction and Building Materials, 47, 643–655. https://doi.org/https://doi.org/10.1016/j.conbuildmat.2013.05.043
  44. Zhang, P., Gao, Z., Wang, J., Guo, J., Hu, S., & Ling, Y. (2020). Properties of fresh and hardened fly ash/slag based geopolymer concrete: A review. Journal of Cleaner Production, 270, 122389. https://doi.org/https://doi.org/10.1016/j.jclepro.2020.122389
DOI: https://doi.org/10.2478/sjce-2025-0009 | Journal eISSN: 1338-3973 | Journal ISSN: 1210-3896
Language: English
Page range: 26 - 35
Published on: Jul 5, 2025
Published by: Slovak University of Technology in Bratislava
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Muhammad Numan, published by Slovak University of Technology in Bratislava
This work is licensed under the Creative Commons Attribution 4.0 License.