References
- Abdalqadir, Z. K. - Salih, N. B. - Salih, S. J. (2022) The improvement of the geotechnical properties of low-plasticity clay (CL) using steel slag in Sulaimani City/Iraq. Geomechanics and Geoengineering, 17(3), pp. 834–841. DOI: https://doi.org/10.1080/17486025.2021.1903087.
- Adlinge, S. S. - A. K. Gupta (2013) Pavement Deterioration and Its Causes. IOSR Journal of Mechanical & Civil Engineering (IOSR-JMCE), pp. 9–15. Available at: https://www.iosrjournals.org/iosr-jmce/papers/sicete(civil)-volume6/60.pdf (accessed at 18/03/2024).
- Alanyali, H. - Çöl, M. - Yilmaz, M. - Karagöz, Ş. (2006) Application of magnetic separation to steelmaking slags for reclamation. Waste Management, 26(10), pp. 1133–1139. DOI: https://doi.org/10.1016/j.wasman.2006.01.017.
- Al-Bared - M. A. M. - Marto, A. (2019) Evaluating the compaction behaviour of soft marine clay stabilized with two sizes of recycled crushed tiles. Lecture Notes in Civil Engineering, Vol. 9, pp. 1273–1284. Springer. DOI: https://doi.org/10.1007/978-981-10-8016-6_90.
- Al-Mukhtar, M. - Lasledj A. - Alcover, J. F. (2010) Behaviour and mineralogy changes in lime-treated expansive soil at 20 °C. Applied Clay Science, 50(2), pp. 191–198. DOI: https://doi.org/10.1016/J.CLAY.2010.07.023.
- Al-Rawas, A. A. - Goosen, M. F. A. (2006) Expansive soils: Recent advances in characterization and treatment. Taylor & Francis. DOI: https://doi.org/10.1201/9780203968079.
- Anggraini, V. - Asadi, A. - Farzadnia, N. - Jahangirian, H. - Huat, B. B. K. (2016) Effects of coir fibres modified with Ca(OH)2 and Mg(OH)2 nanoparticles on mechanical properties of lime-treated marine clay. Geosynthetics International, 23(3), pp. 206–218. DOI: https://doi.org/10.1680/jgein.15.00046.
- Athanasopoulou, A. (2014) Addition of Lime and Fly Ash to Improve Highway Subgrade Soils. Journal of Materials in Civil Engineering, 26(4), pp. 773–775. DOI: https://doi.org/10.1061/(asce)mt.1943-5533.0000856.
- Baghabra Al-Amoudi, O. S. - Ahmad, S. - Maslehuddin, M. -Khan, S. M. S. (2022) Lime-activation of natural pozzolan for use as supplementary cementitious material in concrete. Ain Shams Engineering Journal, 13(3). DOI: https://doi.org/10.1016/J.asej.2021.09.029.
- Bagus, I. - Jais, M. - Syahzani, A. - Rahaizad, A. - Lat, D. C. - Azizi, M. - Ali, M. (2023) Strength of Laterite Mixed with GeoPolySoilS for Slope Cover and Protection. International Journal of Sustainable Construction Engineering And Technology, 14(4), pp. 1–8. DOI: https://doi.org/10.30880/ijscet.2023.14.04.001.
- Bahar, R. - Benazzoug, M. - Kenai, S. (2004) Performance of compacted cement-stabilised soil. Cement and Concrete Composites, 26(7), pp. 811–820. DOI: https://doi.org/10.1016/J.CEMCONCOMP.2004.01.003.
- Baker, S. (2000) Deformation behavior of lime/cement column stabilized clay. Doktorsavhandlingar vid Chalmers Tekniska Hogskola (No. 1634). Available at: https://www.sgi.se/globalassets/publikationer/svensk-djupstabilisering/sd-r7.pdf (accessed at 18/03/2024).
- Basack, S. - Goswami, G. - Khabbaz, H. - Karakouzian, M. - Baruah, P. - Kalita, N. (2021) A comparative study on soil stabilization relevant to transport infrastructure using bagasse ash and stone dust and cost effectiveness. Civil Engineering Journal (Iran), 7(11), pp. 1947–1963. DOI: https://doi.org/10.28991/cej-2021-03091771.
- Beetham, P. - Dijkstra, T., - Dixon, N., - Fleming, P., - Hutchison, R., - Bateman, J. (2015). Lime stabilisation for earthworks: a UK perspective. Proceedings of the Institution of Civil Engineers - Ground Improvement, 168(2), pp. 81–95. DOI: https://doi.org/10.1680/grim.13.00030.
- Bell, F. G. (1996). Lime stabilization of clay minerals and soils. Engineering Geology, 42(4), pp. 223–237. DOI: https://doi.org/10.1016/0013-7952(96)00028-2.
- Brooks, R. M. (2009) Soil stabilization with fly ash and rice husk ash. International Journal of Research and Reviews in Applied Sciences, 1(3), pp. 209–217. DOI: https://link.springer.com/chapter/10.1007/978-981-15-6237-2_43.
- C Sekhar, D. - Nayak, S. (2019) SEM and XRD investigations on lithomargic clay stabilized using granulated blast furnace slag and cement. International Journal of Geotechnical Engineering, 13(6), pp. 615–629. DOI: https://doi.org/10.1080/19386362.2017.1380355.
- Cherian, C., - Arnepalli, D. N. (2015). A Critical Appraisal of the Role of Clay Mineralogy in Lime Stabilization. International Journal of Geosynthetics and Ground Engineering, 1(1), 8. DOI: https://doi.org/10.1007/s40891-015-0009-3.
- Ghanbari, P. G. - Momeni, M. - Mousivand, M. - Bayat, M. (2022) Unconfined Compressive Strength Characteristics of Treated Peat Soil with Cement and Basalt Fibre. International Journal of Engineering, Transactions B: Applications, 35(5), pp. 1089–1095. DOI: https://doi.org/10.5829/ije.2022.35.05b.24.
- Gonawala, R. J. – Kumar, R. - Chauhan, K. A. (2019). Impact of Stabilization of Expansive Clay with Corex Slag and Lime. Geo-Congress 2019, pp. 444–453. DOI: https://ascelibrary.org/doi/epdf/10.1061/9780784482124.045.
- Harichane, K. - Ghrici, M. - Kenai, S. - Grine, K. (2011). Use of Natural Pozzolana and Lime for Stabilization of Cohesive Soils. Geotechnical and Geological Engineering, 29(5), pp. 759–769. DOI: https://doi.org/10.1007/s10706-011-9415-z.
- Islam, S. - Hoque, N. - Chowdhury, M. (2018) Strength Development in Clay Soil Stabilized with Fly Ash. Jordan Journal of Civil Engineering, Vol. 12, No. 2, pp. 188–201.
- Islamuddin Faraz, M. - Goliya, H. S. - Mehta, S. - Kumar, B. (2019) An Experimental Study to Develop the Correlation Between the Properties of Black Cotton Soil Stabilized with Phosphogypsum. Indian Highways, 47(9), pp. 15–24. Available at: https://www.irc.nic.in///admnis/admin/showimg.aspx?ID=559 (accessed at 10/07/2024).
- James, J. - Pandian, P. K. (2016) Industrial Wastes as Auxiliary Additives to Cement/Lime Stabilization of Soils. Advances in Civil Engineering, pp. 1–17. DOI: https://doi.org/10.1155/2016/1267391
- Kang, S. H. - Kwon, Y. H. - Hong, S. G. - Chun, S. - Moon, J. (2019) Hydrated lime activation on byproducts for eco-friendly production of structural mortars. Journal of Cleaner Production, 231, pp. 1389–1398. DOI: https://doi.org/10.1016/J.jclepro.2019.05.313
- Li, Y. - Liu, Y. - Gong, X. - Nie, Z. - Cui, S. - Wang, Z. - Chen, W. (2016) Environmental impact analysis of blast furnace slag applied to ordinary Portland cement production. Journal of Cleaner Production, 120, pp. 221–230. DOI: https://doi.org/10.1016/j.jclepro.2015.12.071
- Little, D. N. (1987) Fundamentals of the Stabilization of Soil with Lime. National Lime Association Bulletin, No. 332, Arlington, Va., USA.
- Little, D. N. (1999) Evaluation Of Structural Properties Of Lime Stabilized Soils And Aggregates, Vol. 1: Summary of findings, National Lime Association. Available at: https://www.lime.org/documents/publications/free_downloads/soils-aggregates-vol1.pdf (accessed at 10/07/2024).
- Luo, X. - Gu, F. - Zhang, Y. - Lytton, R. L. - Zollinger, D. (2017) Mechanistic-empirical models for better consideration of subgrade and unbound layers influence on pavement performance. Transportation Geotechnics, 13, pp. 52–68. DOI: https://doi.org/10.1016/j.trgeo.2017.06.002.
- Majhi, R. K. - Nayak, A. N. (2020) Production of sustainable concrete utilising high-volume blast furnace slag and recycled aggregate with lime activator. Journal of Cleaner Production, 255, 120188. DOI: https://doi.org/10.1016/j.jclepro.2020.120188.
- Marto, A. - Jahidin, M. R. - Aziz, N. A. - Kasim, F. - Mohd Yunus, N. Z. (2016) Stabilization of Marine Clay Using Biomass Silica-Rubber Chips Mixture. IOP Conference Series: Materials Science and Engineering, 160(1), pp. 1-8. DOI: https://doi.org/10.1088/1757-899X/160/1/012084.
- Ma, Y. - Chen, W. (2021) Study on the Mechanism of Stabilizing Loess with Lime: Analysis of Mineral and Microstructure Evolution. Advances in Civil Engineering, 1, pp. 1-9. DOI: https://doi.org/10.1155/2021/6641496.
- Moayed, R. Z. - Izadi, E. - Heidari, S. (2012) Stabilization of saline silty sand using lime and micro silica. Journal of Central South University, 19(10), pp. 3006–3011. DOI: https://doi.org/10.1007/s11771-012-1370-1.
- Nguyen, D. T. - Phan, V. T. A. (2021) Engineering properties of soil stabilized with cement and fly ash for sustainable road construction. International Journal of Engineering, Transactions B: Applications, 34(12), pp. 2665–2671. DOI: https://doi.org/10.5829/IJE.2021.34.12C.12.
- Okagbue, C. O. - Yakubu, J. A. (2000) Limestone ash waste as a substitute for lime in soil improvement for engineering construction. Eng Geol Env, 58, pp.107-113 Springer-Verlag. DOI: https://doi.org/10.1007/s100640050004.
- Pan, D. - Zhao, H. - Zhang, H. - Zhao, P. - Li, Y. - Zou, Q. (2019) Corrosion mechanism of spray refractory in COREX slag with varying basicity. Ceramics International, 45(18), pp. 24398–24404. DOI: https://doi.org/10.1016/j.ceramint.2019.08.161.
- Parvathy, G. - Babu, M. S. - Raja, P. S. K. - Thyagaraj, T. - Vasa, N. J. - Sarathi, R. - Harid, N. - Griffiths, H. (2022) Understanding the Impact of Lime Stabilization on Expansive Soil for Grounding and Analysis Adopting LIBS. IEEE Access, 10, pp. 21066–21076. DOI: https://doi.org/10.1109/ACCESS.2022.3149338.
- Patel, S. - Shahu, J. T. (2015) Engineering Properties of Black Cotton Soil-Dolomite Mix for Its Use as Subbase Material in Pavements. Geotech., Const. Mat. and Env, 8(1), pp. 1159-1166. Available at: https://geomatejournal.com/geomate/article/view/1898/1750 (accessed at 18/03/2024).
- Phanikumar, B. R. - Ramanjaneya Raju, E. (2020). Compaction and strength characteristics of an expansive clay stabilised with lime sludge and cement. Soils and Foundations, 60(1), pp. 129–138. DOI: https://doi.org/10.1016/j.sandf.2020.01.007.
- Rajasekaran, G. - Narsimha Rao, S. (1997) Lime Stabilization Technique for the Improvement of Marine Clay. SOILS AND FOUNDATIONS, 37(2), pp. 97-104. Japanese Geotechnical Society. DOI: https://doi.org/10.3208/sandf.37.2_97.
- Rajasekaran, G. - Rao, S. N. (2001) Effect of Pollutants on the Physical and Engineering Behavior of Lime-Treated Marine Clay. Marine Georesources & Geotechnology, 19(1), pp. 17-35. DOI: https://doi.org/10.1080/10641190109353802.
- Ramesh, H. N. - Manjunatha, B. V. (2020) Justification of strength properties of microstructural changes in the black cotton soil stabilized with rice husk ash and carbide lime in the presence of sodium salts. SN Applied Sciences, 2(3). DOI: https://doi.org/10.1007/s42452-020-2226-1.
- Rogers, C. - Glendinning, S. - Dixon, N. (1996) Lime Stabilization. Thomas Telford Publishing.
- Saadeldin, R. - Siddiqua, S. (2013) Geotechnical characterization of a clay-cement mix. Bulletin of Engineering Geology and the Environment, 72(3–4), pp. 601–608. DOI: https://doi.org/10.1007/s10064-013-0531-2.
- Saber, S. A. - Iravanian, A. (2022) Using Waste Ceramic Dust in Stabilization of Clay Soils. International Journal of Sustainable Construction Engineering and Technology, 13(1), pp. 68–79. DOI: https://doi.org/10.30880/ijscet.2022.13.01.007.
- Salahudeen, A. B. - Ochepo. (2015) Effect of Bagasse Ash on Some Engineering Properties of Lateritic Soil. Jordan Journal of Civil Engineering, 9(4), pp. 468–476). DOI: https://doi.org/10.14525/jjce.9.4.3119.
- Saleh, S. - Yunus, N. Z. M. - Ahmad, K. - Ali, N. (2018) Stabilization of marine clay soil using polyurethane. MATEC Web of Conferences, 250. DOI: https://doi.org/10.1051/matecconf/201825001004
- Satyendra (2017) Corex Process for Production of Iron. Available at: https://www.ispatguru.com/Corex-process-for-production-of-iron/ (accessed at 18/03/2024).
- Seed, H. B. - Woodward, R. J. - Lundgren, R. (1963) Prediction of swelling potential for compacted clays. Transactions of the American Society of Civil Engineers, 128(1), pp. 1443–1477. DOI: https://doi.org/10.1061/JSFEAQ.0000431.
- Singh, B., - Sharma, R. K. (2014) Evaluation of geotechnical properties of local clayey soil blended with waste materials. Jordan Journal of Civil Engineering, 8(2), pp. 135–151. DOI: https://mis.just.edu.jo/issues/paper.php?p=2688.pdf.
- Singh, S., - Patel, S. (2023) Development of angular-shaped lightweight coarse aggregate with low calcium fly ash using autoclave curing - Experimental and microstructural study. Journal of Building Engineering, 79(15). DOI: https://doi.org/10.1016/j.jobe.2023.107860.
- Sumayya, k.p - Rafeequedheenk, M. – Sameer, v.t – Firoz – Khais, p.t – Jithin, K. (2016) Stabilization of expansive soil treated with tile waste. SSRG International Journal of Civil Engineering (SSRG-IJCE), 3 (3), pp. 60-68. Available at: https://www.internationaljournalssrg.org/IJCE/2016/Volume3-Issue3/IJCEV3I3P112.pdf (accessed at 18/03/2024).
- Turkane, S. D. - Chouksey, S. K. (2022) Partial Replacement of Conventional Material with Stabilized Soil in Flexible Pavement Design. International Journal of Engineering, Transactions B: Applications, 35(5), pp. 908–916. DOI: https://doi.org/10.5829/ije.2022.35.05b.07.
- Zainuddin, N. - Mohd Yunus, N. Z. - Al-Bared, M. A. M. - Marto, A. - Harahap, I. S. H. - Rashid, A. S. A. (2019) Measuring the en-gineering properties of marine clay treated with disposed granite waste. Measurement: Journal of the International Measurement Confederation, 131, pp. 50–60. DOI: https://doi.org/10.1016/j.measurement.2018.08.053.