Have a personal or library account? Click to login
Some Properties of a Cementitious Mortar Containing Granulated Rubber Waste and Brick Fillers: An Experimental Study, Mathematical Modeling and Optimization Cover

Some Properties of a Cementitious Mortar Containing Granulated Rubber Waste and Brick Fillers: An Experimental Study, Mathematical Modeling and Optimization

Open Access
|Jul 2024

References

  1. <bold>Alawais, A – West, R.P. (2019)</bold> <em>Ultra-violet and chemical treatment of crumb rubber aggregate in a sustainable concrete mix.</em> J. Struct. Integr. Maint. 4 144-152.
  2. <bold>Batayneh, M.K., - Marie, I., - Asi, I. (2008)</bold> <em>Promoting the use of rubber concrete in developing countries</em>, Wast. Manag. 28; 2171-2176.
  3. <bold>Barua, M.K. – Rao, J.S. (2010)</bold> <em>Measurement surface roughness through RSM: effect of coated carbide tool on 6061-t4 aluminum.</em> Inter. J. Enterp. Net. Manag. (IJENM). 4; 136-153.
  4. <bold>Bektas, F. – Bektas, B.A. (2014)</bold> <em>Analyzing mix parameters in ASR concrete using response surface methodology.</em> Constr. Build. Mater. 66; 299-305.
  5. <bold>Boumaaza, M. – Belaadi, A. – Bourchak, M. (2020)</bold> <em>The Effect of Alkaline Treatment on Mechanical Performance of Natural Fibers-reinforced Plaster: Optimization Using RSM.</em> Journal of Natural Fibers 1-21.
  6. <bold>Bouzid, L. – Berkani, S. – Yallese, M.A. – Girardin, F. – Mabrouki, T. (2018)</bold> <em>Estimation and optimization of flank wear and tool lifespan in finish turning of AISI 304 stainless steel using desirability function approach</em>. Int. J. Ind. Eng. Comput. 9; 349-368.
  7. <bold>Buši´c, R. – Miliˇcevi´c, I. – Šipoš, T.K. – Strukar, K. (2018)</bold> <em>Recycled rubber as an aggregate replacement in self-compacting concrete-literature overview.</em> Materials. 11; 1-25.
  8. <bold>Cairns, R. – Kew, H. – Kenny, M. (2004)</bold> <em>The use of recycled rubber tyres in concrete construction.</em> Final report.The Onyx Environmental Trust, University of Strathclyde, Glasgow.
  9. <bold>Chou, L. – Lin, C. – Lu, C. – Lee, C. – Lee, M. (2010)</bold> <em>Improving rubber concrete by waste organic sulfur compounds.</em> Wast. Manag. Res. 28; 29-35.
  10. <bold>Derringer, G. – Suich, R. (1980)</bold> <em>Simultaneous optimization of several response variables</em>. J. Qual Techn. 12; 214-219.
  11. <bold>Dong, Q. – Huang, B. – Shu, X. (2013)</bold> <em>Rubber modified concrete improved by chemically active coating and silane coupling agent.</em> Constr. Build. Mater. 48; 116-123.
  12. <bold>Grinys, A. – Sivilevicˇius, H. – Dauksˇys, M. (2012)</bold> <em>Type rubber additive effect on concrete mixture strength. J.</em> Civ. Eng. Manag. 18; 393-401.
  13. <bold>Guo, S. – Dai, Q. – Si, R. – Sun, X. – Lu, C. (2017)</bold> <em>Evaluation of properties and performance of rubber-modified concrete for recycling of waste scrap tire.</em> J. Clean. Prod. 148; 681-689.
  14. <bold>Hernández, E.H. – JGámez, .F.H. – Cepeda, L.F. – Muñoz, E.J.C. – Corral, F.S. – Rosales, S.G.S. (2017)</bold> <em>Sulfuric acid treatment of ground tire rubber and its effect on the mechanical and thermal properties of polypropylene composites</em>. J. Appl. Polym. Sci. 134; 1-7.
  15. <bold>Hidalgo, C.A. – Bustamante-Hernández, J.J. (2020)</bold> <em>A new sustainable geotechnical reinforcement system from old tires: experimental evaluation by pullout tests</em>. Sustainability. 12; 1-18.
  16. <bold>Khalil, E. – Abd-elmohsen, M. – Anwar, A.M. (2015)</bold> <em>Impact resistance of rubberized self-compacting concrete</em>. Water. Sci. 29; 45-53.
  17. <bold>Khellaf, A. – Aouici, H. – Smaiah, S. – Boutabba, S. – Yallese, M.A. – Elbah, M. (2017)</bold> <em>Comparative assessment of two ceramic cutting tools on surface roughness in hard turning of AISI H11 steel: including 2D and 3D surface topography</em>. Int. J. Adv. Manuf.Techn.89; 333-354.
  18. <bold>Khuri, A.I – Mukhopadhyay, S. (2010)</bold> <em>Response surface methodology</em>. WIREs. Comput. Stat. 2; 128-149.
  19. <bold>Lafifi, B. – Rouaiguia, A. – Boumazza, N. (2019)</bold> <em>Optimization of geotechnical parameters using Taguchi’s design of experiment (DOE), RSM and desirability function</em>. Innov. Infrastruct Solut. 35; 1-14.
  20. <bold>Li, Z. – Li, F. – Li, J.S.L. (1998)</bold> <em>Properties of concrete incorporating rubber tyre particles</em>. Mag. Conc. Res. 50; 297-304.
  21. <bold>Lo, D. – Presti, (2013)</bold> <em>Recycled tyre rubber modified bitumens for road asphalt mixtures: A literature review.</em> Constr. Build. Mater. 49; 863-881.
  22. <bold>Ma, Q.W. – Yue, J.C. (2013)</bold> <em>Effect on mechanical properties of rubberized concrete due to pretreatment of waste tire rubber with NaOH</em>. Appl. Mech. Mater. 357-360; 897-904.
  23. <bold>Mahla, R. – Mahla, R.P. (2015)</bold> <em>Partial replacement of coarse aggregate by waste tires in cement concrete</em>. Int. J. Tech. Res. (IJTR).4; 95-98.
  24. <bold>Mermerdaş, K. – Algın, Z. – Oleiwi, S.M. – Nassani, D.E. (2017)</bold> <em>Optimization of lightweight GGBFS and FA geopolymer mortars by response surface method</em>. Const. Build. Mater. 139; 159-171.
  25. <bold>Miller, N.M. – Tehrani, F.M. (2017)</bold> <em>Mechanical properties of rubberized lightweight aggregate concrete</em>. Constr. Build. Mater. 147; 264-271.
  26. <bold>Mohajerania, A. – Burnetta, L. – Smitha, J.V. – Markovskia, S. – Rodwella, G. – Rahmana, M.T. – Kurmusa, H. – Mirzababaeib, M. – Arulrajahc, A. – Horpibulsukd, S. – Maghoolc, F. (2020)</bold> <em>Recycling waste rubber tyres in construction materials and associated environmental considerations: A review</em>. Res. Cons. Recy.155; 1-17.
  27. <bold>Myers, R.H. – Montgomery, D.C. (2002)</bold> <em>Response surface methodology: process and product optimization using designed experiments</em>. 2<sup>nd</sup> ed. John Wiley and Sons, Inc, New York.
  28. <bold>Myers, R.H. – Montgomery, D.C. – AndersonCook, C.M. (2016)</bold> <em>Response surface methodology: process and product optimization using designed experiments</em>. Wiley, New York.
  29. <bold>Najim, K.B. – Hall, M.R. (2010)</bold> <em>A review of the fresh/hardened properties and applications for plain- (PRC) and self compacting rubberised concrete (SCRC).</em> Constr. Build. Mater. 24 2043-2051.
  30. <bold>Nambiar, E.K. – Ramamurthy, K. (2006)</bold> <em>Models relating mixture composition to the density and strength of foam concrete using response surface methodology</em>. Cem.Concr. Comp. 28; 752-760.
  31. <bold>Onuaguluchi, O. – Panesar, D.K. (2014)</bold> <em>Hardened properties of concrete mixtures containing pre-coated crumb rubber and silica fume</em>. J. Clean. Prod. 82; 125-131.
  32. <bold>Pedro, D. – De Brito, J. – Veiga, R. (2013)</bold> <em>Mortars made with fine granulates from shredded tires.</em> J. Mater. Civ. Eng. ASCE.25; 519-529.
  33. <bold>Pelisser, F. – Zavarise, N. – Longo, T.A. – Bernardin, A.M. (2011)</bold> <em>Concrete made with recycled tire rubber: effect of alkaline activation and silica fume addition</em>. J. Clean. Prod. 19; 757-763.
  34. <bold>Poon, C.S. – Chan, D. (2006)</bold> <em>Paving blocks made with recycled concrete aggregate and crushed clay brick</em>. Const. Build. Mater. 20; 569-577.
  35. <bold>RedaTaha, M.M. – El-Dieb, A.S. – AbdEl-Wahab, M.A. – Abdel-Hameed, M.E. (2008)</bold> <em>Mechanical, fracture and micro-structural investigations of rubber concrete</em>. J. Mater. Civ. Eng. (ASCE). 20; 640-649.
  36. <bold>Rokade, S. (2012)</bold> <em>Use of waste plastic and waste rubber tyres in flexible highway pavements</em>. International Conference on Future Environment and Energy IPCBEE, p.105-108.
  37. <bold>Sahoo, A.K. – Mishra, P.C. (2014)</bold> <em>A response surface methodology and desirability approach for predictive modeling and optimization of cutting temperature in machining hardened steel.</em> Inter. J. Indus. Eng. Comp. 5; 407-416.
  38. <bold>Serdar, M. – Baričević, A. – Bjegović, D. – Lakušić, S. (2014)</bold> <em>Possibilities of use of products from waste tyre recycling in concrete industry</em>. J. Appl. Eng. Sci. 12; 89-93.
  39. <bold>Shahrul, S. – Mohammed, B.S. – Wahab, M.M.A. – Liew, M.S. (2021)</bold> <em>Mechanical Properties of Crumb Rubber Mortar Containing Nano-Silica Using Response Surface Methodology</em>. Materials.14; 54-69.
  40. <bold>Shu, X. – Huang, B. (2014)</bold> <em>Recycling of waste tire rubber in asphalt and Portland cement concrete: An overview</em>. Constr. Build. Mater. 67; 217-224.
  41. <bold>Si, R. – Guo, S. – Dai, Q. (2017)</bold> <em>Durability performance of rubberized mortar and concrete with NaOH-Solution treated rubber particles</em>. Constr. Build .Mater. 153; 496-505.
  42. <bold>Sinkhonde, D. – Onchiri, R.O. – Oyawa, W.O. – Mwero, J.N. (2021)</bold> <em>Response surface methodology-based optimisation of cost and compressive strength of rubberised concrete incorporating burnt clay brick powder</em>. Heliyon. 7; e085654.
  43. <bold>Sofi, A. (2018)</bold> <em>Effect of waste tyre rubber on mechanical and durability properties of concrete: A review</em>. Ain Shams Eng. J. 9; 2691–2700.
  44. <bold>Sukontasukkul, P. – Tiamlom, K. (2012)</bold> <em>Expansion under water and drying shrinkage of rubberized concrete mixed with crumb rubber with different size</em>. Constr. Build. Mater. 29; 520-526.
  45. <bold>Strukar, k. – Šipoš, T.K. – Miličević, I. – Bušić, R. (2019)</bold> <em>Potential use of rubber as aggregate in structural reinforced concrete element: A review</em>. Eng Stru.188; 452-468.
  46. <bold>Tebassi, H. – Yallese, M.A. – Belhadi, S. – Girardin, F. – Mabrouki, T. (2017)</bold> <em>Qualityproductivity decision making when turning of Inconel 718 aerospace alloy: a response surface methodology approach</em>. Int. J. Ind. Eng. Comput. 8; 347-362.
  47. <bold>Thomas, B.S. – Gupta, R.C. (2016)</bold> <em>A comprehensive review of the applications of waste tire rubber in cement concrete</em>. Renew. Sust. Energ. Revi. 54; 1323-1333.
  48. <bold>Turki,M. – Bretagne, E. – Rouis, M.J. – Queneudec M. (2009)</bold> <em>Microstructure, physical and mechanical properties of mortar– rubber aggregates mixtures</em>. Const. Build. Mater. 23; 2715-2722.
  49. <bold>Uygunog˘lu, T. – Topçu, I.B. (2010)</bold> <em>The role of scrap rubber particles on the drying shrinkage and mechanical properties of self-consolidating mortars</em>. Constr. Build. Mater. 24; 1141-1150.
  50. <bold>Valente, M. – Sibai, A. (2019)</bold> <em>Rubber/crete: Mechanical properties of scrap to reuse tire-derived rubber in concrete; A review. J. Appl</em>. Biomater. <em>Funct. Mater.</em>7; 1-8.
  51. <bold>Zhang, B. – Poon, C.S. (2018)</bold> <em>Sound insulation properties of rubberized lightweight aggregate concrete</em>. J. Clean. Prod. 172; 3176-3185.
DOI: https://doi.org/10.2478/sjce-2024-0011 | Journal eISSN: 1338-3973 | Journal ISSN: 1210-3896
Language: English
Page range: 27 - 37
Published on: Jul 3, 2024
Published by: Slovak University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2024 Salima Boukour, Brahim Lafifi, Mohamed Larbi Benmalek, published by Slovak University of Technology
This work is licensed under the Creative Commons Attribution 4.0 License.