Have a personal or library account? Click to login
Some Properties of a Cementitious Mortar Containing Granulated Rubber Waste and Brick Fillers: An Experimental Study, Mathematical Modeling and Optimization
<bold>Alawais, A – West, R.P. (2019)</bold> <em>Ultra-violet and chemical treatment of crumb rubber aggregate in a sustainable concrete mix.</em> J. Struct. Integr. Maint. 4 144-152.
<bold>Batayneh, M.K., - Marie, I., - Asi, I. (2008)</bold> <em>Promoting the use of rubber concrete in developing countries</em>, Wast. Manag. 28; 2171-2176.
<bold>Boumaaza, M. – Belaadi, A. – Bourchak, M. (2020)</bold> <em>The Effect of Alkaline Treatment on Mechanical Performance of Natural Fibers-reinforced Plaster: Optimization Using RSM.</em> Journal of Natural Fibers 1-21.
<bold>Bouzid, L. – Berkani, S. – Yallese, M.A. – Girardin, F. – Mabrouki, T. (2018)</bold> <em>Estimation and optimization of flank wear and tool lifespan in finish turning of AISI 304 stainless steel using desirability function approach</em>. Int. J. Ind. Eng. Comput. 9; 349-368.
<bold>Buši´c, R. – Miliˇcevi´c, I. – Šipoš, T.K. – Strukar, K. (2018)</bold> <em>Recycled rubber as an aggregate replacement in self-compacting concrete-literature overview.</em> Materials. 11; 1-25.
<bold>Cairns, R. – Kew, H. – Kenny, M. (2004)</bold> <em>The use of recycled rubber tyres in concrete construction.</em> Final report.The Onyx Environmental Trust, University of Strathclyde, Glasgow.
<bold>Chou, L. – Lin, C. – Lu, C. – Lee, C. – Lee, M. (2010)</bold> <em>Improving rubber concrete by waste organic sulfur compounds.</em> Wast. Manag. Res. 28; 29-35.
<bold>Guo, S. – Dai, Q. – Si, R. – Sun, X. – Lu, C. (2017)</bold> <em>Evaluation of properties and performance of rubber-modified concrete for recycling of waste scrap tire.</em> J. Clean. Prod. 148; 681-689.
<bold>Hernández, E.H. – JGámez, .F.H. – Cepeda, L.F. – Muñoz, E.J.C. – Corral, F.S. – Rosales, S.G.S. (2017)</bold> <em>Sulfuric acid treatment of ground tire rubber and its effect on the mechanical and thermal properties of polypropylene composites</em>. J. Appl. Polym. Sci. 134; 1-7.
<bold>Hidalgo, C.A. – Bustamante-Hernández, J.J. (2020)</bold> <em>A new sustainable geotechnical reinforcement system from old tires: experimental evaluation by pullout tests</em>. Sustainability. 12; 1-18.
<bold>Khellaf, A. – Aouici, H. – Smaiah, S. – Boutabba, S. – Yallese, M.A. – Elbah, M. (2017)</bold> <em>Comparative assessment of two ceramic cutting tools on surface roughness in hard turning of AISI H11 steel: including 2D and 3D surface topography</em>. Int. J. Adv. Manuf.Techn.89; 333-354.
<bold>Lafifi, B. – Rouaiguia, A. – Boumazza, N. (2019)</bold> <em>Optimization of geotechnical parameters using Taguchi’s design of experiment (DOE), RSM and desirability function</em>. Innov. Infrastruct Solut. 35; 1-14.
<bold>Lo, D. – Presti, (2013)</bold> <em>Recycled tyre rubber modified bitumens for road asphalt mixtures: A literature review.</em> Constr. Build. Mater. 49; 863-881.
<bold>Ma, Q.W. – Yue, J.C. (2013)</bold> <em>Effect on mechanical properties of rubberized concrete due to pretreatment of waste tire rubber with NaOH</em>. Appl. Mech. Mater. 357-360; 897-904.
<bold>Mahla, R. – Mahla, R.P. (2015)</bold> <em>Partial replacement of coarse aggregate by waste tires in cement concrete</em>. Int. J. Tech. Res. (IJTR).4; 95-98.
<bold>Mermerdaş, K. – Algın, Z. – Oleiwi, S.M. – Nassani, D.E. (2017)</bold> <em>Optimization of lightweight GGBFS and FA geopolymer mortars by response surface method</em>. Const. Build. Mater. 139; 159-171.
<bold>Mohajerania, A. – Burnetta, L. – Smitha, J.V. – Markovskia, S. – Rodwella, G. – Rahmana, M.T. – Kurmusa, H. – Mirzababaeib, M. – Arulrajahc, A. – Horpibulsukd, S. – Maghoolc, F. (2020)</bold> <em>Recycling waste rubber tyres in construction materials and associated environmental considerations: A review</em>. Res. Cons. Recy.155; 1-17.
<bold>Myers, R.H. – Montgomery, D.C. (2002)</bold> <em>Response surface methodology: process and product optimization using designed experiments</em>. 2<sup>nd</sup> ed. John Wiley and Sons, Inc, New York.
<bold>Myers, R.H. – Montgomery, D.C. – AndersonCook, C.M. (2016)</bold> <em>Response surface methodology: process and product optimization using designed experiments</em>. Wiley, New York.
<bold>Nambiar, E.K. – Ramamurthy, K. (2006)</bold> <em>Models relating mixture composition to the density and strength of foam concrete using response surface methodology</em>. Cem.Concr. Comp. 28; 752-760.
<bold>Pedro, D. – De Brito, J. – Veiga, R. (2013)</bold> <em>Mortars made with fine granulates from shredded tires.</em> J. Mater. Civ. Eng. ASCE.25; 519-529.
<bold>Pelisser, F. – Zavarise, N. – Longo, T.A. – Bernardin, A.M. (2011)</bold> <em>Concrete made with recycled tire rubber: effect of alkaline activation and silica fume addition</em>. J. Clean. Prod. 19; 757-763.
<bold>Rokade, S. (2012)</bold> <em>Use of waste plastic and waste rubber tyres in flexible highway pavements</em>. International Conference on Future Environment and Energy IPCBEE, p.105-108.
<bold>Sahoo, A.K. – Mishra, P.C. (2014)</bold> <em>A response surface methodology and desirability approach for predictive modeling and optimization of cutting temperature in machining hardened steel.</em> Inter. J. Indus. Eng. Comp. 5; 407-416.
<bold>Serdar, M. – Baričević, A. – Bjegović, D. – Lakušić, S. (2014)</bold> <em>Possibilities of use of products from waste tyre recycling in concrete industry</em>. J. Appl. Eng. Sci. 12; 89-93.
<bold>Shu, X. – Huang, B. (2014)</bold> <em>Recycling of waste tire rubber in asphalt and Portland cement concrete: An overview</em>. Constr. Build. Mater. 67; 217-224.
<bold>Sofi, A. (2018)</bold> <em>Effect of waste tyre rubber on mechanical and durability properties of concrete: A review</em>. Ain Shams Eng. J. 9; 2691–2700.
<bold>Sukontasukkul, P. – Tiamlom, K. (2012)</bold> <em>Expansion under water and drying shrinkage of rubberized concrete mixed with crumb rubber with different size</em>. Constr. Build. Mater. 29; 520-526.
<bold>Strukar, k. – Šipoš, T.K. – Miličević, I. – Bušić, R. (2019)</bold> <em>Potential use of rubber as aggregate in structural reinforced concrete element: A review</em>. Eng Stru.188; 452-468.
<bold>Tebassi, H. – Yallese, M.A. – Belhadi, S. – Girardin, F. – Mabrouki, T. (2017)</bold> <em>Qualityproductivity decision making when turning of Inconel 718 aerospace alloy: a response surface methodology approach</em>. Int. J. Ind. Eng. Comput. 8; 347-362.
<bold>Uygunog˘lu, T. – Topçu, I.B. (2010)</bold> <em>The role of scrap rubber particles on the drying shrinkage and mechanical properties of self-consolidating mortars</em>. Constr. Build. Mater. 24; 1141-1150.
<bold>Valente, M. – Sibai, A. (2019)</bold> <em>Rubber/crete: Mechanical properties of scrap to reuse tire-derived rubber in concrete; A review. J. Appl</em>. Biomater. <em>Funct. Mater.</em>7; 1-8.