Have a personal or library account? Click to login
Effect of Strapping Straps Waste Fibers on Fresh and Hardened Properties of Concrete Cover

Effect of Strapping Straps Waste Fibers on Fresh and Hardened Properties of Concrete

Open Access
|Mar 2024

References

  1. Abhishek, T.S. – Vijaya, S. – Swamy, B.S. (2015) Study of fresh and mechanical properties of coconut fiber reinforced self compacting concrete enhanced with steel fibers. International Journal of Engineering Research & Technology, 4 (6), pp. 911–914.
  2. Abid, S.R. – Abdul-Hussein, M.L. – Ayoob, N.S. – Ali, S.H. – Kadhum, A.L. (2020) Repeated drop-weight impact tests on self-compacting concrete reinforced with micro-steel fiber. Heliyon, 6, e03198, https://doi.org/10.1016/j.heliyon.2020.e03198
  3. Afroughsabet, V. – Ozbakkaloglu, T. (2015) Mechanical and durability properties of high-strength concrete containing steel and polypropylene fibers. Construction and Building Materials, 94, pp. 73-82. http://dx.doi.org/10.1016/j.conbuildmat.2015.06.051
  4. Akcay, B. – Tasdemir, M.A. (2012) Mechanical behaviour and fibre dispersion of hybrid steel fibre reinforced self-compacting concrete. Constrution and Building Materials, 28, pp. 287-293. doi:10.1016/j.conbuildmat.2011.08.044
  5. Alabduljabbar, H. – Alyousef, R. – Alrshoudi, F. – Alaskar, A. – Fathi, A. – Mohamed, A.M. (2019) Mechanical effect of steel fiber on the cement replacement materials of self-compacting concrete. Fibers, 7 (4), 36. https://doi.org/10.3390/fib7040036
  6. Alhozaimy, A. M. – Soroushiad, P. – Mirza, F. (1996) Mechanical properties of polypropylene fiber reinforced concrete and the effects of pozzolanic materials. Cement and Concrete Composites, 18, pp. 85-92.
  7. Ali, S. – Kumar, H. – Rizvi, S.H. – Raza, M.S. – Ansari, J.K. (2020) Effects of steel fibres on fresh and hardened properties of cement concrete. CEER, 30 (3), pp. 186-198. DOI: 10.2478/ceer-2020-0039
  8. Alwesabi, A.E. – Abu Bakar, B.H. – Alshaikh, I.M.H. – Akil, H.M. (2020) Impact resistance of plain and rubberized concrete containing steel and polypropylene hybrid fiber. Materials Today, 101640. https://doi.org/10.1016/j.mtcomm.2020.101640
  9. Anandaraj, S. – Rooby, J. – Awoyera, P.O. – Gobinath, R. (2019) Structural distress in glass fibre-reinforced concrete under loading and exposure to aggressive environments. Constrution and Building Materials, 197, pp. 862–870. https://doi.org/10.1016/j.conbuildmat.2018.06.090
  10. Awoyera, P.O. – Olalusi, O, B. – Iweriebo, N. (2021) Physical, strength, and microscale properties of plastic fiber-reinforced concrete containing fine ceramics particles. Materialia, 15, 100970. https://doi.org/10.1016/j.mtla.2020.100970
  11. Aydin, A.C. (2007) Self compactability of high volume hybrid fiber reinforced concrete. Construction and Building Materials, 21, pp. 1149-1154. doi:10.1016/j.conbuildmat.2006.11.017
  12. Banthia, N. – Mindess, S. – Trottier, J.F. (1996) Impact resistance of steel fiber reinforced concrete. ACI Materials Journal, 93, pp. 472–479.
  13. Bayasi, M.Z. – Soroushian, P. (1992) Effect of steel fiber reinforcement on fresh mix properties of concrete. ACI Materials Journal, 89, pp. 369–374.
  14. Belgium Standard NBN B15-215, Testing hardened concrete, Ab-sorption of water by immersion
  15. Bentur, A. – Mindess, S. (1990) Fiber Reinforced Cementitious Composites. Taylor and Francis Group, London and New York.
  16. Buratti, N. – Mazzotti, C. – Savoia, M. (2011) Post-cracking behaviour of steel and macrosynthetic fibre-reinforced concretes. Construction and Building Materials, 25, pp. 2713–2722. https://doi.org/10.1016/j.conbuildmat.2010.12.022
  17. Caratelli, A. – Meda, A. – Rinaldi, Z. – Romualdi, P. (2011) Structural behavior of precast tunnel segments in fiber reinforced concrete. Tunnelling and Underground Space Technology, 26, pp. 284–291. https://doi.org/10.1016/j.tust.2010.10.003
  18. CEB-FIP, (1989) Diagnosis and assessment of concrete structures-state of art report. CEB Bulletin, Euro-International Concrete Committee (Comité Euro-International du Béton), 83–85.
  19. Chalioris, C.E. (2013) Steel fibrous RC beams subjected to cyclic deformations under predominant shear. Engineering Structures, 49, pp. 104–118. https://doi.org/10.1016/j.engstruct.2012.10.010
  20. Cuenca, E. – Echegaray-Oviedo, J. – Serna, P. (2015) Influence of concrete matrix and type of fiber on the shear behavior of self-compacting fiber reinforced concrete beams. Composites Part B: Engineering, 75, pp. 135-147. http://dx.doi.org/10.1016/j.compositesb.2015.01.037
  21. Deepa Raj, S. – Ganesan, N. – Abraham, R. (2020) Role of fibers on the performance of geopolymer concrete exterior beam column joints. Advances in Concrete Constructions, 9(2). pp. 115-123. https://doi.org/10.12989/acc.2020.9.2.115
  22. De Figueiredo, A.D. – Ceccato, M.R. (2015) Workability analysis of steel fiber reinforced concrete using slump and Ve-Be test. Materials Researchs, 18, pp. 1284–1290. https://doi.org/10.1590/1516-1439.022915
  23. Ding, Y. – You, Z. – Jalali, S. (2011) The composite effect of steel fibres and stirrups on the shear behaviour of beams using self-consolidating concrete. Engineering Structures, 33,pp. 107–117.
  24. European Standard NF EN 12350-2, Test for fresh concrete - Part 2: Slump test
  25. European Standard NF EN 12350-6, Test for fresh concrete - Part 6: Bulk density test
  26. European Standard NF EN12350-7, Test for fresh concrete - Part 7: Air content test
  27. European Standard NF EN 12390-3, Test for hardened concrete - Part 3: Compressive strength test
  28. European Standard NF EN 12390-5, Test for hardened concrete - Part 5: Flexural strength test
  29. European Standard NF EN 12504-4, Test for hardened concrete - Part 4: Pulse velocity test
  30. Ghamari, A. – Kurdi, J. – Shemirani, A.B. – Haeri, H. (2020) Experimental investigating the properties of fiber reinforced concrete by combining different fibers. Computers and Concrete, 25(6), pp. 509-516. https://doi.org/10.12989/cac.2020.25.6.509
  31. Guerini, V. – Conforti, A. – Plizzari, G. – Kawashima, S. (2018) Influence of Steel and Macro-Synthetic Fibers on Concrete Properties. Fibers, 6 (3), 47. doi:10.3390/fib6030047
  32. Han, C.G. – Hwang, Y.S. – Yang, S.H. – Gowripalan, N. (2005) Performance of spalling resistance of high performance concrete with polypropylene fiber contents and lateral confinement. Cement and Concrete Research, 35, pp. 1747–1753. doi:10.1016/j.cemconres.2004.11.013
  33. Huang, L. – Chi, Y. – Xu, L. – Chen, P. – Zhang, A. (2016) Local bond performance of rebar embedded in steel polypropylene hybrid fiber reinforced concrete under monotonic and cyclic loading. Construction and Building Materials, 103, pp. 77–92. https://doi.org/10.1016/j.conbuildmat.2015.11.040
  34. Hughes, B. P. – Fattuhi, N.I.(1976) The workability of steel-fibre-reinforced concrete. Magazine of Concrete Research, 28 (96), pp. 157-161.
  35. Iqbal, S. – Ali, A. – Holschemacher, K. – Bier, T.A. (2015) Mechanical properties of steel fiber reinforced high strength lightweight self-compacting concrete (SHLSCC). Construction and Building Materials, 98, pp. 325–333. http://dx.doi.org/10.1016/j.conbuildmat.2015.08.112
  36. Kakooei, S. – Akil,H.M. – Jamshidi, M. – Rouhi, J. (2012) The effects of polypropylene fibers on the properties of reinforced concrete structures. Construction and Building Materials, 27, pp. 73–77. doi:10.1016/j.conbuildmat.2011.08.015
  37. Khaloo, A. – Raisi, E.M. – Hosseini, P. – Tahsiri, H. (2014) Mechanical performance of self-compacting concrete reinforced with steel fibers. Construction and Building Materials, 51, pp. 179-186. http://dx.doi.org/10.1016/j.conbuildmat.2013.10.054
  38. Li, B. – Chi, Y. – Xu, L. – Shi, Y. – Li, C. (2018) Experimental investigation on the flexural behavior of steel-polypropylene hybrid fiber reinforced concrete. Construction and Building Materials, 191, pp. 80-94. https://doi.org/10.1016/j.conbuildmat.2018.09.202
  39. Ma, H.L. – Cui, C. – Li, X. – Hu, S.L. (2013) Study on mechanical properties of steel fiber reinforced autoclaved lightweight shell-aggregate concrete. Materials and Design. 52, pp. 565–571. http://dx.doi.org/10.1016/j.matdes.2013.05.086
  40. Marthong, C. (2019) Effect of waste cement bag fibers on the mechanical strength of concrete. Advanced Materials Research, 8(2), pp. 103-115. https://doi.org/10.12989/amr.2019.8.2.103
  41. Mastali, M. – Dalvand, A. (2017) Fresh and Hardened Properties of Self-Compacting Concrete Reinforced with Hybrid Recycled Steel-Polypropylene Fiber. Journal of Materials in Civil Engineering, 29(6), 04017012. doi: 10.1061/(ASCE)MT.1943-5533.0001851
  42. Mazaheripour, H. – Ghanbarpour, S. – Mirmoradi, S.H. – Hosseinpour, I. (2011) The effect of polypropylene fibers on the properties of fresh and hardened lightweight self-compacting concrete. Construction and Building Materials, 25, pp. 351-358. doi:10.1016/j.conbuildmat.2010.06.018
  43. Mazloom, M. – Mirzamohammadi, S. (2019) Thermal effects on the mechanical properties of cement mortars reinforced with aramid, glass, basalt and polypropylene fibers. Advanced Materials Research, 8(2), pp. 137-154. https://doi.org/10.12989/amr.2019.8.2.137
  44. Mindess, S. – Vondran, G. (1988) Properties of concrete reinforced with fibrillated polypropylene fibers under impact loading. Cement and Concrete Research,18, pp. 109–115.
  45. Nagarkar, P.K. – Tambe S.K. – Pazare, D.G. (1987) Study of Fibre Reinforced Concrete. Proceedings of International Symposium of Fibre Reinforced Concrete, Madras, India, December.
  46. Olivito, R.S. – Zuccarello, F.A. (2010) An experimental study on the tensile strength of steel fiber reinforced concrete. Composites Part B: Engineering, 41, pp. 246-255. doi:10.1016/j.compositesb.2009.12.003
  47. Rahmani, T. – Kiani, B. – Shekarchi, M. – Safari, A. (2014) Statistical and experimental analysis on the behavior of fiber reinforced concretes subjected to drop weight test. Construction and Building Materials, 37, pp. 360-369. http://dx.doi.org/10.1016/j.conbuildmat.2012.07.068
  48. Sabri, F- Walid, M. (2020) Evaluate the effect of steel, polypropylene and recycled plastic fibers on concrete properties. Advances in Concrete Construction, 10(4), pp. 319-332. https://doi.org/10.12989/acc.2020.10.4.319
  49. Shah, S.P. – Naaman, A.E. (1976) Mechanical properties of glass and steel fibre reinforced mortar. ACI Journal, 73(1), pp. 50–53.
  50. Slater, E. – Moni, M. – Alam, M.S. (2012) Predicting the shear strength of steel fiber reinforced concrete beams. Construction and Building Materials, 26, pp. 423–436. https://doi.org/10.1016/j.conbuildmat.2011.06.042
  51. Song, P.S. – Hwang, S. (2004) Mechanical properties of high-strength steel fiber-reinforced concrete. Construction and Building Materials, 18, 669-673. doi:10.1016/j.conbuildmat.2004.04.027
  52. Song, P.S. – Hwang, S. – Sheu, B.C. (2005) Strength properties of nylon- and polypropylene-fiber-reinforced concretes. Cement and Concrete Research, 35, pp. 1546–1550. doi:10.1016/j.cemconres.2004.06.033
  53. Sorelli, L.G. – Meda, A. – Plizzari, G.A. (2006) Steel fiber concrete slabs on ground: A structural matter. ACI Structural Journal, 103, pp. 551–558. Doi:10.14359/16431
  54. Tadepalli, P.R. – Hsu, T.T.C. – Mo, Y.L. (2013) Mechanical properties of steel fibre concrete. Magazine of Concrete Research, 65(8), 462-474. http://dx.doi.org/10.1680/macr.12.00077
  55. Tiberti, G. – Minelli, F. – Plizzari, G.A. – Vecchio, F.J. (2014) Influence of concrete strength on crack development in SFRC members. Cement and Concrete Composites, 45, pp. 176-185. https://doi.org/10.1016/j.cemconcomp.2013.10.004
  56. Uysal, M. – Yilmaz, K.(2011) Effect of mineral admixtures on properties of self-compacting concrete. Cement and Concrete Composites, 25, 4112-4120. doi:10.1016/j.cemconcomp.04.005
  57. Watanabe, K. – Kimura, T. – Niwa, J. (2010) Synergetic effect of steel fibers and shear reinforcing bars on the shear-resistance mechanisms of RC linear members. Construction and Building Materials, 24, pp. 2369–2375. https://doi.org/10.1016/j.conbuildmat.2010.05.009
  58. Yan, H. – Sun, W. – Chen, H. (1999) The effect of silica fume and steel fiber on the dynamic mechanical performance of high-strength concrete. Cement and Concrete Research, 29 (3), pp. 423–426. https://doi.org/10.1016/S0008-8846(98)00235-X
  59. Yap, S. – Alengaram, U. – Jumaat, M.Z. (2013) Enhancement of mechanical properties in polypropylene and nylon–fibre reinforced oil palm shell concrete. Materials and Design, 49, pp. 1034–1041. https://doi.org/10.1016/j.matdes.2013.02.070
DOI: https://doi.org/10.2478/sjce-2024-0001 | Journal eISSN: 1338-3973 | Journal ISSN: 1210-3896
Language: English
Page range: 1 - 9
Published on: Mar 30, 2024
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2024 Rachid Djebien, Rachid Kebout, Mouloud Belachia, published by Slovak University of Technology in Bratislava
This work is licensed under the Creative Commons Attribution 4.0 License.