Have a personal or library account? Click to login
Experimental Contribution to Study the Physico-Mechanical and Thermal Properties of Lightweight Cellular Concrete Prepared With Different Types of Sand and Waste Marble Powder Cover

Experimental Contribution to Study the Physico-Mechanical and Thermal Properties of Lightweight Cellular Concrete Prepared With Different Types of Sand and Waste Marble Powder

Open Access
|Dec 2023

References

  1. Agarwal, S. K.Gulati, D. ( 2006) Utilization of industrial wastes and unprocessed micro-fillers for making cost effective mortars, Construction and Building Materials, vol. 20, no. 10, pp. 999– 1004. DOI:10.1016/j.conbuildmat.2005.06.009.
  2. Akbulut, H. – Gurer, C. (2007) Use of aggregates product from marble quarry waste in asphalt pavement, Build. Environ. vol. 42, no 5, pp. 1921-1930. DOI:10.1016/j.buildenv.2006.03.012.
  3. Belachia, M.Hebhoub, H. (2011) Use of the Marble Wastes in the Hydraulic Concrete, 6th International Advanced Technologies Symposium (IATS’11), Elazığ, Turkey, 16-18 May. DOI:10.13140/2.1.4475.2960.
  4. Belhadj, B. – Bederina, M. – Benguettache, Kh. – Queneudec, M. (2014) Effect of the type of sand on the fracture and mechanical properties of sand concrete. Adv. Concr. Constr., 2, pp.13-27, DOI: 10.12989/acc2014.2.1.013.
  5. Binici, H.Shah, T.Aksogan, O.Kaplan, H. (2008) Durability of concrete made with granite and marble as recycle aggregates, J. Mater.Procs.Technol., vol. 208, no 1-3, pp. 299-308. DOI:10.1016/j.jmatprotec.2007.12.120.
  6. Bouguerra, A. – Laurent, J. P. – Goual, M. S. – Queneudec, M. (1997) The measurement of the thermal conductivity of solid aggregates using the transient plane source technique. Journal of Physics D: Applied Physics, vol. 30, no 20, pp. 2900. DOI: 10.1088/0022-3727/30/20/018.
  7. Boutin, C. (1996) Conductivité thermique du béton cellulaire autoclave modélisation par méthode auto cohérente. Matériaux et constructions, vol. 29, no 10, pp. 609-615. Available at: https://hal.archives-ouvertes.fr/hal-00941106.
  8. Cabrillac, R. – Fiorio, B. – Liss Beaucour, A. – Dumontet, H. – Ortola, S. (2006) Experimental study of the mechanical anisotropy of aerated concretes and of the adjustment parameters of the introduced porosity.Constr. Build. Mater., vol. 20, no 5, pp. 286-295. DOI:10.1016/j.conbuildmat.2005.01.023.
  9. Cisse,I. K.Laquerbe, M. ( 2000 ) Mechanical characterization of filler sandcretes with rice husk ash additions : Study applied of Senegal. Cement and Concrete Research, vol. 30, no 1, pp. 13-18. DOI: 10.1016/S0008-8846(99)00182-9.
  10. Corinaldesi, V.Giacomo, M.Naik, TR. (2010) Characterization of marble powder for its use in mortar and concrete .Construction and Building Materials, vol. 24, no 1, pp. 113-117. DOI: 10.1016/j.conbuildmat.2009.08.013.
  11. Damene, Z. – Goual, M. S. – Saiti, I. – Benhassine, N. – Ferhat, A. ( 2014) Study of the effect of aluminum content and c / s ratio on the physico-mechanical and thermal properties of a lightweight concrete made from sand dune. J Fundment Appl Sci, vol. 6, no 2, pp. 220-228. DOI: 10.4314/jfas.v6i2.8.
  12. Damene, Z.Goual, M. S. – Houessou, J. – Dheilly, R. M. – Goullieux, A. – Quéneudec, M. (2018) The use of southern Algeria dune sand in cellular lightweight concrete manufacturing: effect of lime and aluminium content on porosity, compressive strength and thermal conductivity of elaborated materials. European Journal of Environmental and Civil Engineering, vol. 22, no 10, pp. 1273-1289. DOI: 10.1080/19648189.2016.1256233.
  13. Dias, W. P. S. – Seneviratne, G. A. P. S. N. – Nanayakkara, S.M.A. (2008) Offshore sand for reinforced concrete. Construction and Building Materials, 22(7), pp.1377-1384. DOI: 10.1016/j.conbuildmat.2007.04.006.
  14. Ferhat, A. – Goual, M.S. – Damene, Z. – Quéneudec-t’Kint, M. (2023). Experimental study on the effect of lime and aluminium content on porosity, introduced porosity, compressive strength and thermal conductivity of a lightweight cellular concrete based on limestone sand. Construction and Building Materials, vol. 392, pp. 131552. DOI: 10.1016/j.conbuildmat.2023.131552.
  15. Goual, M. S. – Bali, A. – Queneudec, M. (1999) Effective thermal conductivity of clayey aerated concrete in the dry state: experimental results and modelling. Journal of Physics D: Applied Physics, vol. 32, no 23, pp. 3041. DOI: 10.1088/0022-3727/32/23/310.
  16. Guglielmi, P.O.Silva, W. R. L.Repette, W. L. – Hotza, D. (2010) Porosity and Mechanical Strength of an Autoclaved Clay-ey Cellular Concrete. Advances in Civil Engineering. vol. 2010. DOI:10.1155/2010/194102
  17. Gustafsson, S.E. (1991) Transient plane source techniques for thermal diffusivity measurement of solid materials. Rev Sci Instrum; vol. 62, no 3, pp. 797-804.
  18. Jerman, M. – Keppert, M. – Výborný, J. – Černý, R. (2013) Hygric, thermal and durability properties of autoclaved aerated concrete. Construction and Building Materials, vol. 41, pp. 352-359. DOI:10.1016/j.conbuildmat.2012.12.036.
  19. Khodabakhshian, A. – Ghalehnovi, M. – Brito, J.D – Shamsabadi, E.A. (2018) Durability performance of structural concrete containing silica fume and marble industry waste powder. J. Cleaner Prod, vol. 170, pp. 42-60. DOI: 10.1016/j.jclepro.2017.09.116.
  20. Lian, C.Zhuge, Y.Beecham, S. (2011) The relationship between porosity and strength for porous concrete. Construction and building materials, vol. 25, no 11, pp. 4294-4298. DOI:10.1016/j. conbuildmat.2011.05.005.
  21. Makhloufi, Z. – Bederina, M. – Bouhicha, M. – Kadri, E.H. (2014) Effect of mineral admixtures on resistance to sulfuric acid solution of mortars with quaternary binders. Phys. Procedia, vol. 55, pp. 329-335. DOI:10.13140/2.1.1599.4568.
  22. Messaoudene, I.Jauberthie, R.Naceri, A. (2011) Influence des fillers de calcite sur le comportement des mortiers au jeune âge. Actes des 29ème Rencontre de Génie Civil, 29-31 Mai, Tlemcen-Algérie, pp. 197-205. Available at: https://www.researchgate.net/publication/267725592.
  23. Mugahed Amran, Y. H.Nima, F. – Abang Ali, A.A. (2015) Properties and applications of foamed concrete; a review. Construct Build Mater, vol. 101, pp. 990-1005. DOI: 10.1016/j.conbuildmat.2015.10.112.
  24. Munir, M. J. – Kazmi, S. M. S. –Wu, Y.F. (2017) Efficiency of waste marble powder in controlling alkali–silica reaction of concrete: A sustainable approach. Const. Build. Mat, vol. 154, pp. 590-599. DOI: 10.1016/j.conbuildmat.2017.08.002.
  25. Nambiar, E. K. – Ramamurthy, K. (2006) Influence of filler type on the properties of foam concrete. Cem. Concr. Compos., vol. 28, no 5, pp. 475-480.DOI:10.1016/j.cemconcomp.2005.12.001.
  26. Nambiar, E. K. – Ramamurthy, K. (2006) Models relating mixture composition to the density and strength of foam concrete using response surface methodology.Cem.Concr.Compos. vol. 28, no 9, pp. 752-760. DOI: 10.1016/j.cemconcomp.2006.06.001.
  27. Narayanan, N.Ramamurthy, K. (2000) Structure and properties of aerated concrete: a review. Cement & Concrete Composites, vol. 22, no 5, pp. 321-329. DOI: 10.1016/S0958-9465(00)00016-0.
  28. NF EN 18-560 (1990) Analyse granulométrique par tamisage, Granulats, AFNOR.
  29. NF P 18-598 (Déc. 1981) Granulats,Equivalent de sable.
  30. Ramamurthy, K.Nambiar, E. K.Ranjani, G. I. S. (2009) A classification of studies on properties of foam concrete, Cem. Concr. Compos. vol. 31, no 6, pp. 388-396. DOI: 10.1016/j.cemconcomp.2009.04.006.
  31. Richard, A. O.Ramli, M. (2013) Experimental production of sustainable lightweight foamed concrete, Br. J. Appl. Sci. Technol. vol. 3, no 4, pp. 994. DOI:10.9734/BJAST/2013/4242.
  32. RILEM (1970) Commission des bétons légers.Terminologie et définition. Matériaux et construction N°13, pp.60-69.
  33. Rilem, L. C. (1978) Functional classification of lightweight concretes, Mater. Struct, vol. 11, pp. 281-283.
  34. RILEM Recommended Practice. (1993) Autoclaved Aerated Concrete: Properties,Testing and Design. London: Taylor & Francis.
  35. Shirule, P. A. – Ataur, R. – Gupta Rakesh, D. (2012) Partial replacement of cement with marble dust powder. Int J Adv Eng Res Stud., vol.1, no 3, pp. 2249.
  36. Sun, F. L. – Wu, S. – Jiang, Q. – Liu, T.T. (2016) Study on the Threshold Value and Test Methods for Chloride Ion Content in Sea Sand. Key Engineering Materials, vol. 680, pp. 482-485.
  37. Tebbal, N. – Rahmouni, Z. (2016) Influence of local sand on the physicomechanical comportment and durability of high performance concrete. Adv. Civ. Eng., vol. 2016, pp.2-8, DOI: 10.1155/2016/3897064.
  38. Topcu, IB.Bilir, T.Uygunoglu, T. (2009) Effect of waste marble dust content as filler on properties of self-compacting concrete. Const. Build. Mat., vol. 23, no 5, pp. 1947-1953. DOI:10.1016/j.conbuildmat.2008.09.007.
  39. Torquato, S. – Haslach Jr, H.W. (2002) Random heterogeneous materials: microstructure and macroscopic properties. Appl. Mech. Rev., vol. 55, no 4, pp. B62-B63. DOI: 10.1115/1.1483342.
  40. Vardhan, K. – Siddique, R. – Goyal, S. (2019) Strength, permeation and microstructural characteristics of concrete incorporating waste marble. Constr. Build. Mater, vol. 203, pp. 45-55. DOI:10.1016/j.conbuildmat.2019.01.079.
DOI: https://doi.org/10.2478/sjce-2023-0023 | Journal eISSN: 1338-3973 | Journal ISSN: 1210-3896
Language: English
Page range: 16 - 25
Published on: Dec 27, 2023
Published by: Slovak University of Technology in Bratislava
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2023 Moufida Bourema, Idriss Goual, Ahmida Ferhat, published by Slovak University of Technology in Bratislava
This work is licensed under the Creative Commons Attribution 4.0 License.