Have a personal or library account? Click to login
Hardening Accelerators (X-Seed 100 BASF, PCC, LKD and SALT) as Strength-Enhancing Admixture Solutions for Soil Stabilization Cover

Hardening Accelerators (X-Seed 100 BASF, PCC, LKD and SALT) as Strength-Enhancing Admixture Solutions for Soil Stabilization

By: Per Lindh and  Polina Lemenkova  
Open Access
|Apr 2023

References

  1. Akomah, U. – Nwaogazie, I. L. – Akaranta, O. – David, A. O. (2021) Comparative Analysis of Activated Corn Cob and Bentonite Clay for the Removal of Lead and Nickel from Raw Water. Slovak Journal of Civil Engineering, 29(2), 30–38. https://doi.org/10.2478/sjce-2021-0011
  2. Åhnberg, H. – Holm, G. (1987) Om inverkan av härdningstemperaturen på skjuvhållfastheten hos kalk- och cementstabiliserad jord. Statens geotekniska institut, Rapport 30. [On the effect of the curing temperature on the shear strength of lime and cement stabilized soil. Swedish Geotechnical Institute, Report 30.
  3. Barnaure, M. – Bonnet, S. – Poullain, P. (2021) Earth buildings with local materials: Assessing the variability of properties measured using non-destructive methods. Construction and Building Materials, 281, 122613. https://doi.org/10.1016/j.conbuildmat.2021.122613
  4. Brencich, A. – Lątka, D. – Matysek, P. – Orban, Z. – Sterpi, E. (2021) Compressive strength of solid clay brickwork of masonry bridges: Estimate through Schmidt Hammer tests. Construction and Building Materials, 306, 124494. https://doi.org/10.1016/j.conbuildmat.2021.124494
  5. Buritatum, A. – Horpibulsuk, S. – Udomchai, A. – Suddeepong, A. – Takaikaew, T. – Vichitcholchai, N. – Horpibulsuk, J. – Arulrajah, A. (2021) Durability improvement of cement stabilized pavement base using natural rubber latex. Transportation Geotechnics, 28, 100518. https://doi.org/10.1016/j.trgeo.2021.100518
  6. Chen, C. – Roseberg, R. J. – Selker, J. S. (2002) Using microsprinkler irrigation to reduce leaching in a shrink/swell clay soil. Agricultural Water Management, 54, 2, 159-171. https://doi.org/10.1016/S0378-3774(01)00150-0
  7. Coe, J. – Brandenberg, S. J. (2010) p-Wave Reflection Imaging of Submerged Soil Models Using Ultrasound. Journal of Geotechnical and Geoenvironmental Engineering, 136, 10, 1358–1367. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000346
  8. Dahlin, T. – Svensson, M. – Lindh, P. (1999) DC Resistivity and SASW for Validation of Efficiency in So il St abilisation Prior to Road Construction. In: Proceedings EEGS’ 99, Budapest, Hungary, 6-9 Sept. 1999, 1–3. https://doi.org/10.3997/2214-4609.201406466
  9. Di Sante, M., Bernardo, D., Bellezza, I., Fratalocchi, E., Mazzieri, F. (2022) Linking small-strain stiffness to development of chemical reactions in lime-treated soils. Transportation Geotechnics, 34, 100742. https://doi.org/10.1016/j.trgeo.2022.100742
  10. Dimter, S. – Rukavina, T. – Minažek, K. (2016) Estimation of elastic properties of fly ash–stabilized mixes using nondestructive evaluation methods. Construction and Building Materials 102, 505–514. http://dx.doi.org/10.1016/j.conbuildmat.2015.10.175
  11. Drnevich, V. P. – Isenhower, W. M. – Stokoe, K. H. – Allen, J. C. (1987) Instrumentation for Torsional Shear/Resonant Column Measurements Under Anisotropic Stresses. Geotechnical Testing Journal 10(4). https://doi.org/10.1520/GTJ10544J
  12. Drnevich, V. P. – Ashlock, J. C. (2017) Measurement of Damping in Soils by the Resonant Column Test. In: Proceedings Geotechnical Frontiers 2017: Seismic Performance and Liquefaction. GSP 281, March 12–15, 2017, Orlando, FL, USA. https://doi.org/10.1061/9780784480489.009
  13. Howard, A. K. (1986) Soil classification handbook: unified soil classification system. Denver, CO, USA: Geotechnical Branch, Division of Research and Laboratory Services, Engineering and Research Center, Bureau of Reclamation.
  14. Isenhower, W. M. – Stokoe, K. H., II – Allen, J. C. (1987) Instrumentation for Torsional Shear/Resonant Column Measurements Under Anisotropic Stresses. Geotechnical Testing Journal, GTJODJ, 10(4), 183–191.
  15. Ismail, A. I. M. – Ryden, N. (2014) The Quality Control of Engineering Properties for Stabilizing Silty Nile Delta Clay Soil, Egypt. Geotechnical and Geological Engineering, 32, 773–781. https://doi.org/10.1007/s10706-014-9756-5
  16. James, J. (2020) Sugarcane press mud modification of expansive soil stabilized at optimum lime content: Strength, mineralogy and microstructural investigation. Journal of Rock Mechanics and Geotechnical Engineering, 12, 2, 395-402. https://doi.org/10.1016/j.jrmge.2019.10.005
  17. Källén, H. – Heyden, A. – Lindh, P. (2014) Estimation of grain size in asphalt samples using digital image analysis. In Andrew G. Tescher, editor, Applications of Digital Image Processing XXXVII, 9217, 292–300. International Society for Optics and Photonics, SPIE. https://doi.org/10.1117/12.2061730
  18. Källén, H. – Heyden, A. – Åström, K. – Lindh, P. (2016) Measuring and evaluating bitumen coverage of stones using two different digital image analysis methods. Measurement, 84, 56–67, 2016. https://doi.org/10.1016/j.measurement.2016.02.007
  19. Kantesaria, N. – Chandra, P. – Sachan, A. (2021) Stabilization of Expansive Soil Using Agar Biopolymer. In: International Foundations Congress and Equipment Expo 2021 (IFCEE), May 10–14, 2021, Dallas, TX, U.S.A, pp. 272-281. https://doi.org/10.1061/9780784483411.026
  20. Kasprzhitskii, A. – Lazorenko, G. – Yavna, V. – Daniel, Ph. (2016) DFT theoretical and FT-IR spectroscopic investigations of the plasticity of clay minerals dispersions. Journal of Molecular Structure 1109, 97–105. https://doi.org/10.1016/j.mol-struc.2015.12.064
  21. Khabiri, M. M. – Ebrahimialavijeh, B. (2021) Effect of Modifying Aggregates by Rap and the Simultaneous Use of Adhesives for the Stabilization of a Sandy Pavement Subgrade. Slovak Journal of Civil Engineering, 29, 2, 1–8. https://doi.org/10.2478/sjce-2021-0008
  22. Koukouzas, N. – Tyrologou, P. – Koutsovitis, P. – Karapanos, D. – Karkalis, C. (2022) 15 – Soil stabilization. Handbook of Fly Ash, pp. 475–500. Butterworth-Heinemann. ISBN: 978-0-12-817686-3. https://doi.org/10.1016/B978-0-12-817686-3.00004-9
  23. Lemenkov, V. – Lemenkova, P. (2021a) Testing Deformation and Compressive Strength of the Frozen Fine-Grained Soils With Changed Porosity and Density. Journal of Applied Engineering Sciences, 11, 113–120. https://doi.org/10.2478/jaes-2021-0015
  24. Lemenkov, V. – Lemenkova, P. (2021b) Measuring Equivalent Cohesion Ceq of the Frozen Soils by Compression Strength Using Kriolab Equipment. Civil and Environmental Engineering Reports, 31, 63–84. https://doi.org/10.2478/ceer-2021-0020.
  25. Lindh, P. – Dahlin, T. – Svensson, M. (2000) Comparisons between different test methods for soil stabilisation. In: Proceedings of the ISRM International Symposium, Melbourne; Australia, 19-24 Nov. 2000, 1–5.
  26. Lindh P. (2001) Optimizing binder blends for shallow stabilisation of fine-grained soils. Ground Improvement, 5(1), 23–34. https://doi.org/10.1680/grim.2001.5.1.23
  27. Lindh, P. (2003) Mcv and shear strength of compacted fine-grained tills. In: Proceedings of 12th Asian Regional Conference on Soil Mechanics and Geotechnical Engineering, 4–8 Aug. 2003, Singapore, 493–496.
  28. Lindh, P. (2004) Compaction- and strength properties of stabilised and unstabilised fine-grained tills. PhD thesis, Lund University, Lund, Sweden. ISRN: LUTVDG/TVGT-1013–SE. https://doi.org/10.13140/RG.2.1.1313.6481
  29. Lindh, P. – Winter, M. G. (2003) Sample preparation effects on the compaction properties of Swedish fine-grained tills. Quarterly Journal of Engineering Geology and Hydrogeology 36(4), pp. 321–330. https://doi.org/10.1144/1470-9236/03-018
  30. Lindh, P. – Lemenkova, P. (2021a) Evaluation of Different Binder Combinations of Cement, Slag and CKD for S/S Treatment of TBT Contaminated Sediments. Acta Mechanica et Automatica 15(4), pp. 236–248. https://doi.org/10.2478/ama-2021-0030
  31. Lindh, P. – Lemenkova, P. (2021b) Resonant Frequency Ultrasonic P-Waves for Evaluating Uniaxial Compressive Strength of the Stabilized Slag–Cement Sediments. Nordic Concrete Research 65(2), pp. 39–62. https://doi.org/10.2478/ncr-2021-0012
  32. Lo Presti, D. C. F. – Jamiolkowski, M. – Pallara, O. – Cavallaro, A. – Pedroni, S. (1997) Shear modulus and damping of soils. Géotechnique, 47(3), 603–617. https://doi.org/10.1680/geot.1997.47.3.603
  33. Lo Presti, D. – Pallara, O. – Mensi, E. (2007) Characterization of Soil Deposits for Seismic Response Analysis. In: Ling, H.I., Callisto, L., Leshchinsky, D., Koseki, J. (eds) Soil Stress-Strain Behavior: Measurement, Modeling and Analysis. Solid Mechanics and Its Applications, 146. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6146-2_2
  34. Luo, B. – Luo, Z. – Wang, D. – Shen, C. – Xia, M. (2021) Influence of alkaline and alkali-free accelerators on strength, hydration and microstructure characteristics of ultra-high performance concrete. Journal of Materials Research and Technology, 15, 3283–3295. https://doi.org/10.1016/j.jmrt.2021.09.133
  35. Mamoon, S. M. – Ahmad, S. (1990) Seismic Response of Piles to Obliquely Incident SH, SV, and P Waves. Journal of Geotechnical Engineering, 116, 2, 186–204. https://doi.org/10.1061/(ASCE)0733-9410(1990)116:2(186)
  36. Meng, T. – Qiang, Y. – Hu, A. – Xu, C. – Lin, L. (2017) Effect of compound nano-CaCO3 addition on strength development and microstructure of cement-stabilized soil in the marine environment. Construction and Building Materials, 151, 775-781. https://doi.org/10.1016/j.conbuildmat.2017.06.016
  37. Multon, S. – Verdier, J. – Villain, G. – Sogbossi, H. – Dérobert, X. – Cagnon H. – Balayssac, J.-P. (2022) Non-destructive measurements for the evaluation of the air permeability of concrete structures. Measurement, 196 111204. https://doi.org/10.1016/j.measurement.2022.111204
  38. Patel, A. (2019) 3 – Soil stabilization. In: Geotechnical Investigations and Improvement of Ground Conditions. Woodhead Publishing Series in Civil and Structural Engineering. Woodhead Publishing, pp. 19-27. ISBN: 978-0-12-817048-9. https://doi.org/10.1016/B978-0-12-817048-9.00003-2
  39. PCB Piezotronics Group Inc. (2013) Model 352B10. Miniature, lightweight (0.7 gm), ceramic shear ICP® accel., 10 mV/g, 2 to Installation and Operating Manual. https://www.pcb.com/contentstore/docs/pcb_corporate/vibration/products/manuals/352b10.pdf
  40. Saride, S.Puppala, A. J. – Chikyala, S. R. (2013) Swell-shrink and strength behaviors of lime and cement stabilized expansive organic clays. Applied Clay Science, 85, 39-45. https://doi.org/10.1016/j.clay.2013.09.008
  41. Scrivener, K. L. - Juillan, P. - Monteiro, P. J. M. (2015) Advances in understanding cement hydration mechanisms. Cement and Concrete Research, 78, Part A, 38–56. https://doi.org/10.1016/j.cemconres.2015.05.025
  42. She, W. – Wei, L. – Zhao, G. – Yang, G. – Jiang, J. – Hong, J. (2019) New insights into the frost heave behavior of coarse grained soils for high-speed railway roadbed: Clustering effect of fines. Cold Regions Science and Technology, 167, 102863. https://doi.org/10.1016/j.coldre-gions.2019.102863
  43. SIS (2003) Soil quality – Determination of soil water content as a volume fraction on the basis of known dry bulk density – Gravimetric method. https://www.sis.se/en/produkter/environment-health-protection-safety/soil-quality-pedology/hydrological-properties-of-soils/ssiso16586/
  44. SIS (2016) Geotechnical investigation and testing – Laboratory testing of soil – Part 4: Determination of par-ticle size distribution (ISO 17892-4:2016). https://www.sis.se/en/produkter/environment-health-protection-safety/soil-quality-pedology/physical-properties-of-soils/sseni-so1789242016/
  45. SIS (2017a) Soil quality – Determination of particle density (ISO 11508:2017). SS-EN ISO 11508:2017. https://www.sis.se/en/produkter/environment-health-protection-safety/soil-quality-pedology/physical-properties-of-soils/ss-en-iso-115082017/
  46. SIS (2017b) Geotechnical investigation and testing – Laboratory testing of soil – Part 7: Unconfined compression test (ISO 17892-7:2017). https://www.sis.se/en/produkter/environment-health-protection-safety/soil-quality-pedolo-gy/physical-properties-of-soils/ss-en-iso-17892-72018/
  47. SIS (2019) Standard Test Methods for Downhole Seismic Testing. ASTM standard D7400/D7400M-19. STD- 80010978. https://www.sis.se/en/produkter/external-cate-gories/construction-astm-vol-04/soil-and-rock-ii-d5877--latest-astmvol-0409/astm-d7400d7400m-19/
  48. TBA Trimmiser Baustoffe AG (2010) Report from practice on the X-Seed 100® accelerator from BASF [Online access: 07.04.2022]. URL: https://www.bft-international.com/en/artikel/artikel_en_965624.html
  49. Verástegui-Flores, R. D. – Di Emidio, G. – Bezuijen, A. – Vanwalleghem, J. – Kersemans, M. (2015) Evaluation of the free-free resonant frequency method to determine stiffness moduli of cement-treated soil. Soils and Foundation, 55(5), 930–950. https://doi.org/10.1016/j.sandf.2015.09.001
  50. Vrettos, C. – Banzibaganye, G. (2022) Effects of specimen size and inertia on resonant column tests applied to sands. Soil Dynamics and Earthquake Engineering 155, 107136. https://doi.org/10.1016/j.soildyn.2021.107136
  51. Wang, C. – Feng, G. – Zhang, Z. – Huang, M. – Qi, W. – Ma, L. (2021) Geometrical and statistical analysis of dynamic crack morphology in shrink-swell soils with addition of maize roots or salinity (NaCl). Soil and Tillage Research, 212, 105057. https://doi.org/10.1016/j.still.2021.105057
  52. Wang, F. - Li, K. - Liu, Y. (2022a) Optimal water-cement ratio of cement-stabilized soil. Construction and Building Materials, 320, 126211. https://doi.org/10.1016/j.conbuild-mat.2021.126211
  53. Wang, Y. - Shi, C. - Lei, L. - Ma, Y. - Liu, J. - Hu, X. (2022b) Formulation of an alkali-free accelerator and its effects on hydration and mechanical properties of Portland cement. Cement and Concrete Composites, 129, 104485. https://doi.org/10.1016/j.cemconcomp.2022.104485
  54. Wu, J. – Min, Y. – Li, B. – Zheng, X. (2021) Stiffness and strength development of the soft clay stabilized by the one-part geopolymer under one-dimensional compressive loading. Soils and Foundations, 61, 4, 974–988. https://doi.org/10.1016/j.sandf.2021.06.001
  55. Yang, J. - Yang, M. - He, X. - Ma, M. - Fan, M. - Su, Y. - Tan, H. (2021) Green reaction-type nucleation seed accelerator prepared from coal fly ash ground in water environment. Construction and Building Materials, 306, 124840. https://doi.org/10.1016/j.conbuildmat.2021.124840
  56. Young, J. F. (2001) Portland Cements. In: Jürgen Buschow et al. (eds.). Encyclopedia of Materials: Science and Tech-nology (2nd Ed.). Elsevier, Oxford, UK. pp. 7768–7773. ISBN: 978-0-08-043 152-9. https://doi.org/10.1016/B0-08-043152-6/01398-X
  57. Zhang, J. – Tan, H. – He, X. – Zhao, R. – Yang, J. – Su, Y. (2021) Nano particles prepared from hardened cement paste by wet grinding and its utilization as an accelerator in Portland cement. Journal of Cleaner Production, 283, 124632. https://doi.org/10.1016/j.jclepro.2020.124632
  58. Zhang, Y. – Wang, F. – Tian, Q. -–Shen, Z. (2022) Chapter 3 – Natural or engineered clays for stabilization/solidification. Low Carbon Stabilization and Solidification of Hazardous Wastes, 31-47. https://doi.org/10.1016/B978-0-12-824004-5.00024-4
  59. Zhao, D. - Khoshnazar, R. (2021) Hydration and microstructural development of calcined clay cement paste in the presence of calcium-silicate-hydrate (C–S–H) seed. Ce-ment and Concrete Composites, 122, 104162. https://doi.org/10.1016/j.cemconcomp.2021.104162
  60. Zhou, M. – Du, Y.-J. – Wang, F. – Arulrajah, A. – Horpibulsuk, S. (2017) Earth pressures on the trenched HDPE pipes in fine-grained soils during construction phase: Full-scale field trial and finite element modeling. Transportation Geotechnics, 12, 56-69. https://doi.org/10.1016/j.trgeo.2017.08.002
DOI: https://doi.org/10.2478/sjce-2023-0002 | Journal eISSN: 1338-3973 | Journal ISSN: 1210-3896
Language: English
Page range: 10 - 21
Published on: Apr 2, 2023
Published by: Slovak University of Technology in Bratislava
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2023 Per Lindh, Polina Lemenkova, published by Slovak University of Technology in Bratislava
This work is licensed under the Creative Commons Attribution 4.0 License.