Have a personal or library account? Click to login
Workability and Strength Characteristics of Alkali-Activated Fly ASH/GGBS Concrete Activated with Neutral Grade Na2SiO3 for Various Binder Contents and the Ratio of the Liquid/Binder Cover

Workability and Strength Characteristics of Alkali-Activated Fly ASH/GGBS Concrete Activated with Neutral Grade Na2SiO3 for Various Binder Contents and the Ratio of the Liquid/Binder

Open Access
|Oct 2022

References

  1. Andrew, R. (2018) Global CO2 emissions from cement production. Earth Syst Sci Data, Vol. 10, 195-217.10.5194/essd-10-195-2018
  2. Arivalagan, S. (2014) Sustainable studies on concrete with ggbs as a replacement material in cement. Jordan J. Civil Eng, Vol. 8, No. 3, pp. 263-270.
  3. Bakharev, T. et al. (1999) Alkali activation of Australian slag cements. Cement and Concrete Research, Vol. 29, pp. 113–20.10.1016/S0008-8846(98)00170-7
  4. Bernal. S.A. et al. (2010) Performance of an alkali-activated slag concrete reinforced with steel fibers. Construct. Build. Mater, Vol. 24, No. 2, pp. 208–214.10.1016/j.conbuildmat.2007.10.027
  5. Bondar, D. et al. (2011) Effect of type, form, and dosage of activators on strength of alkali-activated natural pozzolan. Cement and Concrete Research, Vol. 33, No. 2, pp. 251-260.10.1016/j.cemconcomp.2010.10.021
  6. Bondar Qianmin, M.A. (2018) Alkali Activated slag concretes designed for a desired slump. Strength and chloride diffusivity. Construction and Building materials, Vol. 190, pp. 191-199.10.1016/j.conbuildmat.2018.09.124
  7. Caijun, S. - Yinyuz, L. (1989) Investigation on some factors affecting the characteristics of alkali-phosphorus slag cement. Cement Concrete Res, Vol. 19, pp. 527–33.10.1016/0008-8846(89)90004-5
  8. Chindaprasirt, P. et al. (2007) Workability and strength of coarse high calcium fly ash geopolymer. Cement and concrete composites, Vol 29, No. 3, pp. 224-229.10.1016/j.cemconcomp.2006.11.002
  9. Daniel, K. J. et al. (2006) The behavior of geopolymer paste and concrete at elevated temperatures In: international Conference on Pozzolan Concrete and Geopolymer, KhonKaen, Thailand, pp. 105–118
  10. Davidovits, J. et al. (1990) Geopolymeric concretes for environmental protection. ACI Concr Int J, Vol. 12, No. 7, pp. 30–40.
  11. Davidovits, J. (1994) Properties of geopolymer cements In: First international conference on alkaline cements and concretes. Scientific Research Institute on Binders and Materials Kiev, Ukraine, pp. 131–149.
  12. Deb. P.S. et al. (2014) The effects of ground granulated blast-furnace slag blending with fly ash and activator content on the workability and strength properties of geopolymer concrete cured at ambient temperature. Materials and Design (1980-2015), Vol. 62, pp. 32-39.10.1016/j.matdes.2014.05.001
  13. Douglas, E. et al. (1991) Alkali activated ground granulated blast furnace slag concrete: preliminary investigation. Cem Concr Res, Vol. 21, No. 1, pp. 101-108.10.1016/0008-8846(91)90036-H
  14. Douglas, E. et al. (1992) Properties and durability of alkali activated slag concrete. ACI Mater J, Vol. 89, pp. 509–16.10.14359/1832
  15. Elmore, A.R. (2004) Final Report on the Safety Assessment of Potassium Silicate, Sodium Metasilicate, and Sodium Silicate. International Journal of Toxicology, Vol. 24, pp. 103-117.10.1080/10915810590918643
  16. Glukhovsky, V.D. (1980) High strength slag-alkaline cements. 7th Inter Congr Chem Cem, Paris, Vol. 3, pp. 164-168.
  17. Glukhovsky, V.D. (1959) Soil silicates. Gosstroiizdat, Kiev (in Russian).
  18. Gugulothu, V. - Gunneswara Rao, T.D. (2020) Effect of Binder Content and Solution/Binder Ratio on Alkali-Activated Slag Concrete Activated with Neutral Grade Water Glass. Arab J Sci Eng, Vol. 45, pp. 8187–8197.10.1007/s13369-020-04666-5
  19. Hardjito, D. et al. (2004) On the development of fly ash-based geo-polymer concrete. ACI Mater J, Vol. 101, No. 6, pp. 467–72.10.14359/13485
  20. Huanhai, Z. et al. (1993) Kinetic study of hydration of alkali-activated slag. Cem Concr Res, Vol. 23, pp. 1253.10.1016/0008-8846(93)90062-E
  21. Jimenez, A.F. et al. (1999) Alkali-activated slag mortars: mechanical strength behavior. Cement Concrete Res, Vol. 29, No. 13, pp. 13–21.
  22. IS 516 – 1959, Indian standard code of practice: Methods of Tests for Strength of Concrete. Bureau of Indian Standards, New Delhi, India.
  23. IS 4031 (part 4) – 1988, Method of physical tests for hydraulic cement: Determination of consistency of standard cement paste. Bureau of Indian Standards, New Delhi, India.
  24. IS 4031 (part 5) – 1988, Method of physical tests for hydraulic cement-Determination of initial and final setting times. Bureau of Indian Standards, New Delhi, India.
  25. IS 1199-1959, Methods of Sampling and Analysis of Concrete. Bureau of Indian Standards, New Delhi, India.
  26. IS 383-1970, Specification for Coarse and Fine Aggregates from Natural Sources for Concrete. Bureau of Indian Standards, New Delhi, India.
  27. Jannie, H.X. - Deventer, S.J.V. (2002) Geopolymerisation of multiple minerals. Miner Eng, Vol. 15, pp. 1131–9.10.1016/S0892-6875(02)00255-8
  28. Joseph. (1999) Chemistry of geopolymeric systems, terminology, Geopolymer international conference In: James C (ed.), France, pp. 9–40.
  29. Krizan, D. - Zivanovic, B. (2002) Effects of dosage and modulus of water glass on early hydration of alkali–slag cements. Cement and Concrete Research, Vol. 32, No. 118, pp. 1–8.10.1016/S0008-8846(01)00717-7
  30. Landrou, G. et al. (2016) Lime as an anti-plasticizer for self-compacting clay concrete. Materials, Vol. 9, pp. 330.10.3390/ma9050330550301728773453
  31. Lee, W.K.M. - Van Deventer, J.S.F. (2007) Chemical interactions between siliceous aggregates and low-Ca alkali-activated cements. Cem. Concr. Res, Vol. 37, No. 6, pp. 844–85510.1016/j.cemconres.2007.03.012
  32. Le, Q.C. - Andrew, R.M. (2017) Global carbon budge. Earth Syst Sci Data.
  33. Le, Q.C. - Andrew, R.M. (2016) Global carbon budge. Earth Syst Sci Data, Vol. 8, pp. 605-649.
  34. Mallikarjuna Rao, G. - Gunneswara Rao, T.D. (2015) Final setting time and compressive strength of flyash and ggbs based geo-polymer paste and mortar. Arab J Sci Eng, Vol. 40, No. 11, pp. 3067-3074.10.1007/s13369-015-1757-z
  35. Malolepszy, J. - Petri, M. (1986) High strength slag-alkaline binder, 8th Inter Congr Chem Cem, Rio de Janeiro, Vol. 4, pp. 108-111.
  36. Midhun, M.S. et al. (2018) Mechanical and fracture properties of glass fiber reinforced geopolymer concrete. Adv. Concr. Constr, Vol. 6, No.1, pp. 29–45.
  37. Mustafa, A.M. et al. (2011) The Effect of Curing Temperature on Physical and Chemical Properties of Geopolymers. Physics Procedia, Vol. 22, pp. 286–291.10.1016/j.phpro.2011.11.045
  38. Palacios, M. et al. (2008) Rheology and setting of alkali-activated slag pastes and mortars: effect of organic admixture. ACI Materials Journal, Vol. 105, No. (2), pp. 140.10.14359/19754
  39. Palacios, M. (2006) Empleo de aditivosorgánicosen la mejora de las propiedades de cementos y morteros de escoria activad al calinamente. Universidad Autónoma de Madrid.
  40. Palacios, M. - Puertas, F. (2011) Effectiveness of Mixing Time on Hardened Properties of Waterglass-Activated Slag Pastes and Mortars. ACI Materials Journal. Vol. 108, p. 1.10.14359/51664218
  41. Patil, A.A. et al. (2014) Effect of curing condition on strength of geopolymer concrete. Advances in concrete construction. Vol. 2, No. 1, pp. 029.10.12989/acc.2014.2.1.029
  42. Provis, J.L. et al. (2007; 28) Will geopolymers stand the test of time? Ceram. Eng. Sci. Proc, Vol. (9), pp. 235–248.10.1002/9780470339749.ch22
  43. Provis, J.L. (2014) Introduction and scope. In: Provis J.L., Van Deventer J S J (ed.). Alkali Activated Materials. State-of-the-Art Report. RILEM TC 224-AAM. Springer, Dordrecht, pp. 1–9.10.1007/978-94-007-7672-2_1
  44. Puertas, F. et al. (2014) Rheology of alkali-activated slag pastes. Effect of the nature and concentration of the activating solution. Cement and Concrete Composites, Vol. 53, pp. 279-288.10.1016/j.cemconcomp.2014.07.012
  45. Richardson, I.G. et al. (1994) The characterization of hardened alkali-activated blast-furnace slag pastes and the nature of the calcium silicate hydrate (C–S–H) phase. Cement Concrete Res, Vol. 25, pp. 813–29.10.1016/0008-8846(94)90002-7
  46. Rodriguez-Puerta, C. (2014) Comportamiento reologico y mecanico de pastas y morteros de cementos eco-eficiente Reutilizacion de residuos vitreos, Proyecto, Fin de Carrera-UPM-CSIC.
  47. Shi, C. - Day, R.L. (1995) A calorimetric study of early hydration of alkali-slag cements, Cement and Concrete Research, Vol. 25, No. 6, pp. 1333-1346.10.1016/0008-8846(95)00126-W
  48. Shi, C. et al. (2006) Alkali-activated cement and concretes. London and NY, Taylor and Francis.10.4324/9780203390672
  49. Shi, C. et al. (2005) Characteristics and pozzolanic reactivity of glass powders. Cem Concr Res, Vol. 35, pp. 987–99.10.1016/j.cemconres.2004.05.015
  50. Tailing, B. - Brandstetr, J. (1989) Present state and future of alkali-activated slag concretes: 3rd Inter Conf Fly Ash. Silica Fume. Slag and Natural Pozzolans in Concrete, Trondheim, 2 SP 114-74:1519-1546.
  51. Temuujin, J. et al. (2009) Influence of calcium compounds on the mechanical properties of fly ash geopolymer paste. J Hazard Mater, Vol. 167, pp. 82–88.10.1016/j.jhazmat.2008.12.121
  52. Thunuguntla, C.S. - Rao, T.G. (2018) Effect of mix design parameters on mechanical and durability properties of alkali activated slag concrete. Construction and Building Materials, Vol.193, pp.173-188.10.1016/j.conbuildmat.2018.10.189
  53. Venu, M. - Rao T.G. (2017) Tie-confinement aspects of fly ash-GGBS based geopolymer concrete short columns. Constr. Build. Mater, Vol. 151, pp. 28–35.10.1016/j.conbuildmat.2017.06.065
  54. Vikas, G. - Rao, T.D.G. (2021) Setting Time, Workability and Strength Properties of Alkali Activated Fly Ash and Slag Based Geopolymer Concrete Activated with High Silica Modulus Water Glass. Iran J Sci Technol Trans Civ Eng, Vol. 45, pp. 1483–1492.10.1007/s40996-021-00598-8
  55. Wang, S.D. et al. (1995) Alkali-activated slag cement and concrete: a review of properties and problem. Adv Cem Res, Vol. 27, pp. 93-102.10.1680/adcr.1995.7.27.93
  56. Wang, S.D. et al. (1994) Factors affecting the strength of alkali-activated slag. Cement Concrete Res, Vol. 24, pp. 1033–43.10.1016/0008-8846(94)90026-4
  57. Wang, S.D. - Scrivener, K.L. (1994) Comment on activation of ground blast furnace slag by alkali-metal and alkaline-earth hydroxides. Am Ceram Soc, Vol. 77, No. 4, pp. 11-16.10.1111/j.1151-2916.1994.tb07285.x
  58. Wongpa, J. et al. (2010) Compressive strength, modulus of elasticity, and water permeability of inorganic polymer concrete. Mater. Des, Vol. 31, No. 10, pp. 4748–4754.10.1016/j.matdes.2010.05.012
  59. Wan, H. et al. (2004) Analysis of geometric characteristics of GGBS particles and their influences on cement properties. Cem Concr Res, Vol. 34, pp. 133–137.10.1016/S0008-8846(03)00252-7
  60. Wardhono, A. et al.(2014) The mechanical properties of fly ash geopolymer in long term performance, In: The CIC2014 “Concrete Innovation Conference”, Oslo, Norway.
  61. Xi, F. - Davis, S.J. (2016) Substantial global carbon uptake by cement carbonation. Nat Geo Sci, Vol. 9, pp. 880-883.10.1038/ngeo2840
  62. Xu, H. - Van Deventer, J.S.J. (2000) The geo-polymerization of alumino-silicate minerals. Int J Miner Process, Vol. 59, pp. 247–66.10.1016/S0301-7516(99)00074-5
  63. Zivica, V. (2007) Effects of type and dosage of alkaline activator and temperature on the properties of alkali-activated slag mixtures. Construction and Building Materials, Vol. 21, pp. 1463-1469.10.1016/j.conbuildmat.2006.07.002
DOI: https://doi.org/10.2478/sjce-2022-0021 | Journal eISSN: 1338-3973 | Journal ISSN: 1210-3896
Language: English
Page range: 53 - 64
Published on: Oct 13, 2022
Published by: Slovak University of Technology in Bratislava
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2022 Gugulothu Vikas Paul, T. D. Gunneswara Rao, published by Slovak University of Technology in Bratislava
This work is licensed under the Creative Commons Attribution 4.0 License.