Have a personal or library account? Click to login
Non-Hydrostatic Transitional Open-Channel Flows from a Supercritical to a Subcritical State Cover

Non-Hydrostatic Transitional Open-Channel Flows from a Supercritical to a Subcritical State

Open Access
|Jul 2021

References

  1. Abbott, M. B. – Rodenhuis, G. S. (1972) A numerical simulation of the undular hydraulic jump. J. Hydraul. Res., 10(3), 239–257.10.1080/00221687209500160
  2. Abbott, M. B. – Petersen, H. M. – Skovgaard, O. (1978) On the numerical modeling of short waves in shallow water. J. Hydraul. Res., 16(3), 173–204.10.1080/00221687809499616
  3. Bakhmeteff, B. A. – Matzke, A. E. (1936) The hydraulic jump in terms of dynamic similarity. Trans. ASCE, 101(1), 630–647.10.1061/TACEAT.0004708
  4. Bashforth, F. – Adams, J. C. (1883) An Attempt to Test the Theories of Capillary Action by Comparing the Theoretical and Measured Forms of Drops of Fluid, with an Explanation of the Method of Integration Employed in Constructing the Tables which Give the Theoretical Forms of Such Drops. Cambridge University Press, Cambridge, UK, 18–19. Available online: https://www.archive.org/details/attempttest00bashrich (accessed on 04 May 2020).
  5. Bayon-Barrachina, A. – Lopez-Jimenez, P. A. (2015) Numerical analysis of hydraulic jumps using OpenFOAM. J. Hydroinform., 17, 662–678.
  6. Bélanger, J. B. (1845) Notes sur l’Hydraulique (Notes on Hydraulic Engineering). École Royale des Ponts et Chaussées, Paris, France, Session 1845–1846, 84–85 [in French]. Available online: https://patrimoine.enpc.fr/document/ENPC02_COU_4_2381_1845 (accessed on 10 July 2020).
  7. Benjamin, T. B. – Lighthill, M. J. (1954) On cnoidal waves and bores. Proc. Roy. Soc. Lond. A, 224(1159), doi:10.1098/rspa.1954.0172.10.1098/rspa.1954.0172
  8. Bickley, W. G. (1941) Formulae for numerical differentiation. Math. Gaz., 25(263), 19–27, doi:10.2307/3606475.10.2307/3606475
  9. Bose, S. – Castro-Orgaz, O. – Dey, S. (2012) Free-surface profiles of undular hydraulic jumps. J. Hydraul. Eng., 138(4), 362–366.10.1061/(ASCE)HY.1943-7900.0000510
  10. Boussinesq, J. (1877) Essai Sur la Théorie des Eaux Courantes (Essay on the Theory of Water Flow). Mémoires Présentés par Divers Savants à l’Académie des Sciences, Paris, 23(1), 196–198 [in French].
  11. Chanson H. (1995) Flow Characteristics of Undular Hydraulic Jumps: Comparison with Near-Critical Flows. Research Report CH45/95. Department of Civil Engineering, University of Queensland, Brisbane, Australia.
  12. Chanson, H. – Montes, J. S. (1995) Characteristics of undular hydraulic jumps. Experimental apparatus and flow patterns. J. Hydraul. Eng., 121(2), 129–144.
  13. Chanson, H. (2000) Boundary shear stress measurements in undular flows: Application to standing wave bed forms. Water Resour. Res., 36(10), 3063–3076.10.1029/2000WR900154
  14. Chanson H. (2009) Current knowledge in hydraulic jumps and related phenomena. A survey of experimental results. Eur. J. Mech. B/ Fluids, 28(2), 191–210.10.1016/j.euromechflu.2008.06.004
  15. Chow, V. T. (1959) Open-Channel Hydraulics. McGraw-Hill, New York, NY, USA, 60.
  16. Dey, S. – Sarkar, A. (2008) Characteristics of turbulent flow in submerged jumps on rough beds. J. Eng. Mech., 134(1), doi:10.1061/ (ASCE)0733-9399(2008)134:1(49).10.1061/(ASCE)0733-9399(2008)134:1(49)
  17. Fawer, C. (1937) Etude de Quelques Écoulements Permanents à Filets Courbes (Study of Some Permanent Flows with Curved Filaments). Docteur ès Sciences Techniques Thèse, Université de Lausanne, Lausanne, Switzerland [in French], doi:10.5075/epfl-thesis-9.
  18. Fenton, J. D. – Zerihun, Y. T. (2007) A Boussinesq approximation for open-channel flow. In: Proceedings of the 32nd Congress, IAHR, Venice, Italy, 2–6 July, CD-ROM.
  19. Gharangik, A. M. (1988) Numerical Simulation of Hydraulic Jump. Master’s Thesis, Washington State University, Pullman, WA, USA.
  20. Grillhofer, W. – Schneider, W. (2003) The undular hydraulic jump in turbulent open-channel flow at large Reynolds numbers. Phys. Fluids, 15(3), 730–735.10.1063/1.1538249
  21. Gotoh, H. – Yasuda, Y. – Ohtsu, I. (2005) Effect of channel slope on flow characteristics of undular hydraulic jumps. WIT Trans. Ecol. Environ., 83, 33–43.
  22. Govinda Rao, N. S. – Rajaratnam, N. (1963) The submerged hydraulic jump. J. Hydraul. Div., 89(HY1), 139–162.10.1061/JYCEAJ.0000822
  23. Hager, W. H. – Hutter, K. (1983) Approximate treatment of the plane hydraulic jump with separation zone above the flow zone. J. Hydraul. Res., 21(3), 195–204.10.1080/00221688309499414
  24. Hager, W. H. – Hutter, K. (1984) On pseudo-uniform flow in open-channel hydraulics. Acta Mech., 53, 183–200.
  25. Hager, W. H. (1993) Classical hydraulic jump: Free-surface profiles. Can. J. Civ. Eng., 20(3), 536–539.10.1139/l93-068
  26. Khan, A. A. – Steffler, P. M. (1996) Physically based hydraulic jump model for depth-averaged computation. J. Hydraul. Eng., 122, 540–548.
  27. Liu, M. – Rajaratnam, N. – Zhu, D. (2004) Turbulence structure of hydraulic jumps of low Froude numbers. J. Hydraul. Eng., 130, 511–520.
  28. Long, D. (1991) An Experimental Investigation and κ – ε Turbulence Modeling of Submerged Hydraulic Jumps. Ph.D. Thesis, Department of Civil Engineering, University of Alberta, Edmonton, AL, Canada.
  29. Long, D. – Steffler, P. M. – Rajaratnam, N. (1991) A numerical study of submerged hydraulic jumps. J. Hydraul. Res., 29(3), 293–308.10.1080/00221689109498435
  30. Ma, F. – Hou, Y. – Prinos, P. (2001) Numerical calculation of submerged hydraulic jumps. J. Hydraul. Res., 39(5), 493–503.10.1080/00221686.2001.9628274
  31. Madsen, P. A. – Simonsen, H. J. – Pan, C. H. (2005) Numerical simulation of tidal bores and hydraulic jumps. Coast. Eng., 52, 409–433.
  32. Mandrup-Andersen, V. (1978) Undular hydraulic jump. J. Hydraul. Div., 104(HY8), 1185–1188.10.1061/JYCEAJ.0005048
  33. McCorquodale, J. A. – Khalifa, A. (1983) Internal flow in hydraulic jumps. J. Hydraul. Eng., 109(5), doi:10.1061/(ASCE)0733-9429(1983)109:5(684).10.1061/(ASCE)0733-9429(1983)109:5(684)
  34. Mignot, E. – Cienfuegos, R. (2010) Energy dissipation and turbulent production in weak hydraulic jumps. J. Hydraul. Eng., 136, doi:10.1061/(ASCE)HY.1943-7900.0000124.10.1061/(ASCE)HY.1943-7900.0000124
  35. Montes, J. S. (1986) A study of the undular jump profile. In: Proceedings of the 9th Australasian Fluid Mechanics Conference, Auckland, New Zealand, 8–12 Dec., 148–151.
  36. Montes, J. S. – Chanson, H. (1998) Characteristics of undular hydraulic jumps. Experiments and analysis. J. Hydraul. Eng., 124(2), 192–205.10.1061/(ASCE)0733-9429(1998)124:2(192)
  37. Ohtsu, I. – Yasuda, Y. – Gotoh, H. (2001) Hydraulic condition for undular-jump formations. J. Hydraul. Res., 39(2), 203–209.10.1080/00221680109499821
  38. Padulano, R. – et al. (2017) Hydraulic design of a USBR type II stilling basin. J. Irrig. Drain. Eng., 143(5), doi:10.1061/(ASCE) IR.1943-4774.0001150.
  39. Qingchao, L. – Drewes, U. (1994) Turbulence characteristics in free and forced hydraulic jumps. J. Hydraul. Res., 32(6), 877–898.10.1080/00221689409498696
  40. Rajaratnam, N. – Subramanya, K. (1968) Profiles of the hydraulic jump. J. Hydraul. Div., 94(HY3), 663–674.10.1061/JYCEAJ.0001810
  41. Reinauer, R. – Hager, W. H. (1995) Non-breaking undular hydraulic jump. J. Hydraul. Res., 33(5), 683–698.10.1080/00221689509498564
  42. Resch, F. J. – Leutheusser, H. J. (1972a) Reynolds stress measurements in hydraulic jumps. J. Hydraul. Res., 10(4), 409–429.10.1080/00221687209500033
  43. Resch, F. J. – Leutheusser, H. J. (1972b) Le ressaut hydraulique: Mesure de turbulence dans la région diphasique (The hydraulic jump: Turbulence measurements in the two-phase flow region). La Houille Blanche, 4, 279–293 [in French].10.1051/lhb/1972021
  44. Resch, F. J. – Leutheusser, H. J. – Alemu, S. (1974) Bubbly two-phase flow in hydraulic jump. J. Hydraul. Div., 100(HY1), 137–149.10.1061/JYCEAJ.0003850
  45. Richard, G. L. – Gavrilyuk, S. L. (2013) The classical hydraulic jump in a model of shear shallow-water flows. J. Fluid Mech., 725, 492–521.
  46. Ryabenko, A. A. (1990) Conditions favorable to the existence of an undulating jump. Hydrotech. Constr., 24(12), doi:10.1007/BF01434602.10.1007/BF01434602
  47. Takahashi, M. – Ohtsu, I. (2017) Effects of inflows on air entrainment in hydraulic jumps below a gate. J. Hydraul. Res., 55(2), 259–268.10.1080/00221686.2016.1238016
  48. Witt, A. – Gulliver, J. – Shen, L. (2018) Numerical investigation of vorticity and bubble clustering in an air entraining hydraulic jump. Comput. Fluids, 172, 162–180.
  49. Zerihun, Y. T. (2008) Numerical modeling of open-channel flow with dual free surfaces – Free overfall. In: Proceedings of the 8th International Conference on Hydro-Science and -Engineering, Nagoya, Japan, 8–12 Sept., CD-ROM.
  50. Zerihun, Y. T. (2016) Modeling free-surface flow with curvilinear streamlines by a non-hydrostatic model. J. Hydrol. Hydromech., 64(3), 281–288.10.1515/johh-2016-0028
  51. Zerihun, Y. T. (2017a) A numerical study of non-hydrostatic shallow flows in open channels. Arch. Hydro-Eng. Environ. Mech., 64(1), 17–35.10.1515/heem-2017-0002
  52. Zerihun, Y. T. (2017b) A non-hydrostatic depth-averaged model for hydraulically steep free-surface flows. Fluids, 2(4), doi:10.3390/fluids2040049.10.3390/fluids2040049
  53. Zigrang, D. J. – Sylvester, N. D. (1982) Explicit approximations to the solution of Colebrook’s friction factor equation. AIChE J., 28(3), 514–515.10.1002/aic.690280323
DOI: https://doi.org/10.2478/sjce-2021-0012 | Journal eISSN: 1338-3973 | Journal ISSN: 1210-3896
Language: English
Page range: 39 - 48
Published on: Jul 12, 2021
Published by: Slovak University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2021 Yebegaeshet T. Zerihun, published by Slovak University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.