Abbott, M. B. – Rodenhuis, G. S. (1972)A numerical simulation of the undular hydraulic jump. J. Hydraul. Res., 10(3), 239–257.10.1080/00221687209500160
Abbott, M. B. – Petersen, H. M. – Skovgaard, O. (1978)On the numerical modeling of short waves in shallow water. J. Hydraul. Res., 16(3), 173–204.10.1080/00221687809499616
Bashforth, F. – Adams, J. C. (1883)An Attempt to Test the Theories of Capillary Action by Comparing the Theoretical and Measured Forms of Drops of Fluid, with an Explanation of the Method of Integration Employed in Constructing the Tables which Give the Theoretical Forms of Such Drops. Cambridge University Press, Cambridge, UK, 18–19. Available online: https://www.archive.org/details/attempttest00bashrich (accessed on 04 May 2020).
Bélanger, J. B. (1845)Notes sur l’Hydraulique (Notes on Hydraulic Engineering). École Royale des Ponts et Chaussées, Paris, France, Session 1845–1846, 84–85 [in French]. Available online: https://patrimoine.enpc.fr/document/ENPC02_COU_4_2381_1845 (accessed on 10 July 2020).
Bose, S. – Castro-Orgaz, O. – Dey, S. (2012)Free-surface profiles of undular hydraulic jumps. J. Hydraul. Eng., 138(4), 362–366.10.1061/(ASCE)HY.1943-7900.0000510
Boussinesq, J. (1877)Essai Sur la Théorie des Eaux Courantes (Essay on the Theory of Water Flow). Mémoires Présentés par Divers Savants à l’Académie des Sciences, Paris, 23(1), 196–198 [in French].
Chanson H. (1995)Flow Characteristics of Undular Hydraulic Jumps: Comparison with Near-Critical Flows. Research Report CH45/95. Department of Civil Engineering, University of Queensland, Brisbane, Australia.
Chanson, H. – Montes, J. S. (1995)Characteristics of undular hydraulic jumps. Experimental apparatus and flow patterns. J. Hydraul. Eng., 121(2), 129–144.
Chanson, H. (2000)Boundary shear stress measurements in undular flows: Application to standing wave bed forms. Water Resour. Res., 36(10), 3063–3076.10.1029/2000WR900154
Chanson H. (2009)Current knowledge in hydraulic jumps and related phenomena. A survey of experimental results. Eur. J. Mech. B/ Fluids, 28(2), 191–210.10.1016/j.euromechflu.2008.06.004
Dey, S. – Sarkar, A. (2008)Characteristics of turbulent flow in submerged jumps on rough beds. J. Eng. Mech., 134(1), doi:10.1061/ (ASCE)0733-9399(2008)134:1(49).10.1061/(ASCE)0733-9399(2008)134:1(49)
Fawer, C. (1937)Etude de Quelques Écoulements Permanents à Filets Courbes (Study of Some Permanent Flows with Curved Filaments). Docteur ès Sciences Techniques Thèse, Université de Lausanne, Lausanne, Switzerland [in French], doi:10.5075/epfl-thesis-9.
Fenton, J. D. – Zerihun, Y. T. (2007)A Boussinesq approximation for open-channel flow. In: Proceedings of the 32nd Congress, IAHR, Venice, Italy, 2–6 July, CD-ROM.
Grillhofer, W. – Schneider, W. (2003)The undular hydraulic jump in turbulent open-channel flow at large Reynolds numbers. Phys. Fluids, 15(3), 730–735.10.1063/1.1538249
Gotoh, H. – Yasuda, Y. – Ohtsu, I. (2005)Effect of channel slope on flow characteristics of undular hydraulic jumps. WIT Trans. Ecol. Environ., 83, 33–43.
Hager, W. H. – Hutter, K. (1983)Approximate treatment of the plane hydraulic jump with separation zone above the flow zone. J. Hydraul. Res., 21(3), 195–204.10.1080/00221688309499414
Long, D. (1991)An Experimental Investigation and κ – ε Turbulence Modeling of Submerged Hydraulic Jumps. Ph.D. Thesis, Department of Civil Engineering, University of Alberta, Edmonton, AL, Canada.
Long, D. – Steffler, P. M. – Rajaratnam, N. (1991)A numerical study of submerged hydraulic jumps. J. Hydraul. Res., 29(3), 293–308.10.1080/00221689109498435
Montes, J. S. (1986)A study of the undular jump profile. In: Proceedings of the 9th Australasian Fluid Mechanics Conference, Auckland, New Zealand, 8–12 Dec., 148–151.
Montes, J. S. – Chanson, H. (1998)Characteristics of undular hydraulic jumps. Experiments and analysis. J. Hydraul. Eng., 124(2), 192–205.10.1061/(ASCE)0733-9429(1998)124:2(192)
Qingchao, L. – Drewes, U. (1994)Turbulence characteristics in free and forced hydraulic jumps. J. Hydraul. Res., 32(6), 877–898.10.1080/00221689409498696
Resch, F. J. – Leutheusser, H. J. (1972b)Le ressaut hydraulique: Mesure de turbulence dans la région diphasique (The hydraulic jump: Turbulence measurements in the two-phase flow region). La Houille Blanche, 4, 279–293 [in French].10.1051/lhb/1972021
Resch, F. J. – Leutheusser, H. J. – Alemu, S. (1974)Bubbly two-phase flow in hydraulic jump. J. Hydraul. Div., 100(HY1), 137–149.10.1061/JYCEAJ.0003850
Ryabenko, A. A. (1990)Conditions favorable to the existence of an undulating jump. Hydrotech. Constr., 24(12), doi:10.1007/BF01434602.10.1007/BF01434602
Takahashi, M. – Ohtsu, I. (2017)Effects of inflows on air entrainment in hydraulic jumps below a gate. J. Hydraul. Res., 55(2), 259–268.10.1080/00221686.2016.1238016
Witt, A. – Gulliver, J. – Shen, L. (2018)Numerical investigation of vorticity and bubble clustering in an air entraining hydraulic jump. Comput. Fluids, 172, 162–180.
Zerihun, Y. T. (2008)Numerical modeling of open-channel flow with dual free surfaces – Free overfall. In: Proceedings of the 8th International Conference on Hydro-Science and -Engineering, Nagoya, Japan, 8–12 Sept., CD-ROM.
Zerihun, Y. T. (2016)Modeling free-surface flow with curvilinear streamlines by a non-hydrostatic model. J. Hydrol. Hydromech., 64(3), 281–288.10.1515/johh-2016-0028
Zerihun, Y. T. (2017a)A numerical study of non-hydrostatic shallow flows in open channels. Arch. Hydro-Eng. Environ. Mech., 64(1), 17–35.10.1515/heem-2017-0002
Zigrang, D. J. – Sylvester, N. D. (1982)Explicit approximations to the solution of Colebrook’s friction factor equation. AIChE J., 28(3), 514–515.10.1002/aic.690280323