Have a personal or library account? Click to login
Regression Analysis of Small Strain Shear and Constrained Modulus Measurements on Sands with Fines: Effect of Different Void Ratio Functions Used Cover

Regression Analysis of Small Strain Shear and Constrained Modulus Measurements on Sands with Fines: Effect of Different Void Ratio Functions Used

Open Access
|Jan 2019

References

  1. Atkinson, J., Sallfors, G., (1991) Experimental determination of soil properties. Proceedings of 10th ECSMFE, Florence, Vol. 3, pp. 915-956.
  2. Benz, T., (2007) Small Strain Stiffness of Soils and Its Numerical Consequences. Mitteilung 55 des Instituts fur Geotechnik der Universitat of Stuttgart, p. 187.
  3. Carraro, J., Prezzi, M., Salgado, R., (2009) Shear Strength and Stiffness of Sands Containing Plastic or Nonplastic Fines. Journal of Geotechnical and Geoenvironmental Engineering, 135(9), pp. 1167-1178.10.1061/(ASCE)1090-0241(2009)135:9(1167)
  4. Goudrazy, M., Rahman, M., Konig, D., Schanz, T., (2016) Influence of Non-Plastic Fines Content on Maximum Shear Modulus of Granular Materials. Soils and Foundations, 56(6), pp. 973-983.10.1016/j.sandf.2016.11.003
  5. Greening, P., Nash, D., (2004) Frequency domain determination of G0 using bender elements. Geotechnical Testing Journal, 27(3), pp. 1-7.10.1520/GTJ11192
  6. Gu, X., Yang, J., Huang, M., (2013) Laboratory Measurements of Small Strain Properties of Dry Sands by Bender Element. Soils and Foundations, 53(5), pp. 735-745.10.1016/j.sandf.2013.08.011
  7. Gu, X., Yang, J., Huang, M., Gao, G., (2015) Bender Element Tests in Dry and Saturated Sand: Signal Interpretation and Result Comparison. Soils and Foundations, 55(5), pp. 952-963.10.1016/j.sandf.2015.09.002
  8. Hardin, B., Drnevich, V., (1972) Shear Modulus and Damping in Soils: Design Equations and Curves. Journal of the Soil Mechanics and Foundations Division, ASCE(SM7), pp. 667-692.10.1061/JSFEAQ.0001760
  9. Hardin, B., Richart, F., (1963) Elastic wave velocities in granular soils. Journal of Soil Mechanics and Foundations Division, 89(SM 1), pp. 33-65.10.1061/JSFEAQ.0000493
  10. Ishibashi, I., Zhang, X., (1993) Unified Dynamic Shear Moduli and Damping Ratios of Sand and Clay. Soils and Foundations, 33(1), pp. 182-191.10.3208/sandf1972.33.182
  11. Iwasaki, T., Tatsuoka, F., (1977) Effects of grain size and grading on dynamics shear moduli of sands. Soils and Foundations, 17(3), pp. 19-35.10.3208/sandf1972.17.3_19
  12. Jamiolkowski, M., Leroueil, S., Lo Presti, D., (1991) Theme lecture: Design Parameters from Theory to Practice. Proceedings of Geo-Coast, pp. 1-41.
  13. Jovicic, V., Coop, M., Simic, M., (1996) Objective criteria for determining Gmax from bender element tests. Géotechnique, 46(2), pp. 357-362.10.1680/geot.1996.46.2.357
  14. Lee, J., Santamarina, C., (2005) Bender Elements: Performance and Signal Interpretation. Journal of Geotechnical and Geoenvironmental Engineering, 131(9), pp. 1063-1070.10.1061/(ASCE)1090-0241(2005)131:9(1063)
  15. Lings, M., Greening, P., (2001) A novel bender/extender element for soil testing. Géotechnique, 51(8), pp. 713-717.10.1680/geot.51.8.713.40469
  16. Lo Presti, D. et al., (1993) Monotonic and Cyclic Loading Behaviour of Two Sands. Geotechnical Testing Journal, 16(4), pp. 409-424.10.1520/GTJ10281J
  17. MathWorks Inc., (2017a) MatLab. Natick, Mass., USA.
  18. Ogino, K., Kawaguchi, T., Yamashita, S., Kawajiri, S., (2015) Measurement deviations for shear wave velocity of bender ele- domain approaches. Soils and Foundations, 55(2), pp. 329-342.10.1016/j.sandf.2015.02.009
  19. Oztoprak, S., Bolton, M., (2013) Stiffness of Sands Through a Laboratory Test Database. Géotechnique, 63(1), pp. 54-70.10.1680/geot.10.P.078
  20. Panuška, J., (2018) Elastic properties of natural sands with fines measured by bender / extender elements. Dissertation thesis, Dept. of Geotechnics, Slovak University of Technology, p. 233.
  21. Payan, M., Khoshghalb, A., Senetakis, K., Khalili, N., (2016a) Effect of Particle Shape and Validity of Gmax Models for Sand: A Critical Review and a New Expression. Computers and Geotechnics, Vol. 72, pp. 28-41.10.1016/j.compgeo.2015.11.003
  22. Paydar, N., Ahmadi, M., (2016) Effect of Fines Type and Content of Sand on Correlation Between Shear Wave Velocity and Liquefaction Resistance. Geotechnical and Geological Engineering, 34(6), pp. 1857-1876.10.1007/s10706-016-9995-8
  23. Rohatgi, A., (2017) WebPlotDigitizer. https://automeris.io/WebPlot-Digitizer.
  24. Salgado, R., Bandini, P. & Karim, A., (2000) Shear Strength and Stiffness of Silty Sand. Journal of Geotechnical and Geoenvironmental Engineering, 126(5), pp. 451-462.10.1061/(ASCE)1090-0241(2000)126:5(451)
  25. Sanchez-Salinero, I., Roesset, J., Stokoe, K., (1986) Analytical studies of body wave propagation and attenuation. Geotechnical Engineering Center, Civil Engineering Department, Univ. of Texas at Austin, Report GR86-15, p. 272.
  26. Senetakis, K., Anastasiadis, A., Pitilakis, K., (2012) The Small Strain Shear Modulus and Damping Ratio of Quartz and Volcanic Sands. Geotechnical Testing Journal, 35(6), pp. 1-17.10.1520/GTJ20120073
  27. Senetakis, K. et al., (2017) Experimental Investigation of Primary- Wave Velocities and Constrained Moduli of Quartz Sand Subjected to Extender Element Tests and Stress Anisotropy. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 3(2), pp. 211-219.10.1007/s40948-017-0054-6
  28. Shibuya, S., Hwang, S., Mitachi, T., (1997) Elastic Shear Modulus of Soft Clays from Shear Wave Velocity Measurement. Géotechnique, 47(3), pp. 593-601.10.1680/geot.1997.47.3.593
  29. Shirley, D., Hampton, L., (1978) Shear-wave measurements in laboratory sediments. The Journal of the Acoustical Society of America, 63(2), pp. 607-613.10.1121/1.381760
  30. Schultheiss, P., (1981) Simultanous Measurement of P and S Wave Velocities During Conventional Laboratory Soil Testing Procedures. Marine Geotechnology, 4(4), pp. 343-367.10.1080/10641198109379831
  31. Szilvágyi, Z., (2018) Dynamic Soil Properties of Danube Sands. Dissertation thesis, Department of Structural and Geotechnical Engineering, Széchenyi István University Győr, p. 127.
  32. Viana Da Fonseca, A., Ferreira, C., Fahey, M., (2008) A framework interpreting bender element tests, combining time-domain and frequency-domain methods. Geotechnical Testing Journal, 32(2), pp. 1-17.10.1520/GTJ100974
  33. Wichtmann, T., Navarrete Hernández, M., Triantafyllidis, T., (2015) On the Influence of Non-Cohesive Fines Content on Small Strain Stiffness, Modulus Degradation and Damping of Quartz Sand. Soil Dynamics and Earthquake Engineering, Volume 69, pp. 103-114.10.1016/j.soildyn.2014.10.017
  34. Wichtmann, T., Triantafyllidis, T., (2009) Influence of the Grain- Size Distribution Curve of Quartz Sand on the Small Strain Shear Modulus Gmax. Journal of Geotechnical and Geoenvironmental Engineering, Vol. 135, pp. 1404-1418.10.1061/(ASCE)GT.1943-5606.0000096
  35. Wichtmann, T., Triantafyllidis, T., (2010) On the Influence of the Grain Size Distribution Curve on P - Wave Velocity and Constrained Elastic Modulus Mmax and Poisson´s Ratio of Quartz Sand. Soil Dynamics and Earthquake Engineering, Vol. 30, pp. 757-766.10.1016/j.soildyn.2010.03.006
  36. Yamashita, S. et al., (2009) Interpretation of international parallel test on the measurement of Gmax using bender elements. Soils and Foundation, 49(4), pp. 631-650.10.3208/sandf.49.631
  37. Yang, J., Liu, X., (2016) Shear Wave Velocity and Stiffness of Sand: The Role of Non-Plastic Fines. Géotechnique, 66(6), pp. 500-514.10.1680/jgeot.15.P.205
DOI: https://doi.org/10.2478/sjce-2018-0023 | Journal eISSN: 1338-3973 | Journal ISSN: 1210-3896
Language: English
Page range: 11 - 19
Published on: Jan 18, 2019
Published by: Slovak University of Technology in Bratislava
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2019 Jakub Panuška, Jana Frankovská, published by Slovak University of Technology in Bratislava
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.