Have a personal or library account? Click to login
Analysis of Beams with Transversal Gradations of the Young's Modulus and Variable Depths by the Meshless Method Cover

Analysis of Beams with Transversal Gradations of the Young's Modulus and Variable Depths by the Meshless Method

Open Access
|Apr 2014

Abstract

A numerical analysis based on the meshless local Petrov- Galerkin (MLPG) method is proposed for a functionally graded material FGM (FGMfunctionally graded material) beam. The planar bending of the beam is considered with a transversal gradation of Young's modulus and a variable depth of the beam. The collocation formulation is constructed from the equilibrium equations for the mechanical fields. Dirac's delta function is employed as a test function in the derivation of a strong formulation. The Moving Least Squares (MLS) approximation technique is applied for an approximation of the spatial variations of all the physical quantities. An investigation of the accuracy, the convergence of the accuracy, the computational efficiency and the effect of the level of the gradation of Young's modulus on the behaviour of coupled mechanical fields is presented in various boundary value problems for a rectangular beam with a functionally graded Young's modulus.

DOI: https://doi.org/10.2478/sjce-2014-0004 | Journal eISSN: 1338-3973 | Journal ISSN: 1210-3896
Language: English
Page range: 23 - 36
Published on: Apr 12, 2014
Published by: Slovak University of Technology in Bratislava
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2014 Ladislav Sátor, Vladimír Sládek, Ján Sládek, published by Slovak University of Technology in Bratislava
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.