Have a personal or library account? Click to login
Consistency and Some Other Requirements of a Formal Theory in the Context of Multiverse Models Cover

Consistency and Some Other Requirements of a Formal Theory in the Context of Multiverse Models

Open Access
|Jul 2024

References

  1. Balaguer, M. (1998). Platonism and anti-Platonism in mathematics. Oxford University Press.
  2. Bangu, S. (2020). Mathematical explanations of physical phenomena. Australasian Journal of Philosophy, 99(4), 669–682. https://www.tandfonline.com/doi/abs/10.1080/00048402.2020.1822895?journalCode=rajp20
  3. Birkhoff, G., & Neumann von, J. (1936). The logic of quantum mechanics. Annals of Mathematics, 37, 823–843.
  4. Chudnoff, E. (2020). In search of intuition. Australasian Journal of Philosophy, 98(3), 1–16.
  5. Côté, G. (2013). Mathematical Platonism and the nature of infinity. Open Journal of Philosophy, 3(3), 372–375.
  6. Descartes, R. (1989). Sochineniya [Essays]. Mysl.
  7. Everett, D. (2007). Recursion and human thought: Why the Pirahã don’t have numbers. The Edge. https://www.edge.org/conversation/daniel_l_everett-recursion-and-human-thought
  8. Everett, H. (2015). The many-worlds interpretation of quantum mechanics. Princeton University Press.
  9. Feferman, S. (Ed.). (2001). Kurt Gödel Collected Works. Vol 1. Oxford University Press.
  10. Filler, A. (2009). The history, development and impact of computed imaging in neurological diagnosis and neurosurgery: CT, MRI, and DTI. Nature Proceedings, 7(1), 1–76.
  11. Hilbert, D. (1902). Mathematical problems. Bulletin of the American Mathematical Society, 8(10), 437–479.
  12. Jaśkowski, S. (1969). Propositional calculus for contradictory deductive systems. Studia Logica, 24, 143–157.
  13. Karpenko, I. (2017). Fizicheskie teorii v usloviyakh mnozhestva vozmozhnykh mirov [Physical theories in the conditions of many possible worlds]. Filosofskii zhurnal, 10(2), 62–78.
  14. Karpenko, A. S. (2001). Paraneprotivorechivaya logika [Paraconsistent logic]. Novaya filosofskaya entsiklopediya [New encyclopaedia of philosophy]. https://iphlib.ru/library/collection/newphilenc/document/HASH6e472c9660a3b326ebfc6e
  15. Kleene, S. C. (2012). Introduction to metamathematics. Literary Licensing, LLC.
  16. Lektorskii, V. A. (Ed.). (2017). Perspektivy realizma v sovremennoi filosofii [Perspectives of realism in contemporary philosophy]. Kanon+.
  17. Lewis, D. (2001). On the plurality of worlds. Blackwell.
  18. Linde, A. (1982). A new inflationary universe scenario: A possible solution of the horizon, flatness, homogeneity, isotropy and primordial monopole problems. Physics Letters B, 108(6), 389–393.
  19. Linde, A. (1983). Chaotic inflation. Physics Letters B, 129(3–4), 177–181.
  20. Linnebo, Ø. (2020). Philosophy of mathematics. Princeton University Press.
  21. Panza, M., & Sereni, A. (2013). Plato’s problem: An introduction to mathematical Platonism. Palgrave-Macmillan.
  22. Porus, V. (2021). Istoricheskaya epistemologiya —Trigger reformy filosofii poznaniya [Historical epistemology—The trigger of the reform of the philosophy of knowledge]. Voprosy filosofii, 5, 47–57.
  23. Pronskikh, V. (2021). Vsegda li vosproizvodimost’ vazhna i vozmozhna dlya nauchnogo eksperimenta? [Is reproducibility always important and possible for a scientific experiment?] Voprosy filosofii, 8, 103–115.
  24. Pruss, A. R. (2011). Actuality, possibility, and worlds. Continuum.
  25. Snapper, E. (1979). The three crises in mathematics: Logicism, intuitionism and formalism. Mathematics Magazine, 52(4), 207–216.
  26. Susskind, L. (2003). The anthropic landscape of string theory. https://arxiv.org/pdf/hepth/0302219.pdf
  27. Szmuc, D., Pailos, F., & Barrio, E. (2018). What is a paraconsistent logic? In J. Malinowski & W. Carnielli (Eds.), Contradictions, from consistency to inconsistency (pp. 89–108). Springer.
  28. Tegmark, M. (1988). Is ‘the theory of everything’ merely the ultimate ensemble theory? Annals of Physics, 270(1), 1–51.
  29. Terekhovich, V. (2019). Tri podkhoda k probleme kvantovoi real’nosti i vtoraya kvantovaya revolyutsiya [Three approaches to the problem of quantum reality and the second quantum revolution]. Epistemologiya i filosofiya nauki, 56(1), 169–184.
  30. Tieszen, R. (2011). After Godel: Platonism and rationalism in mathematics and logic. Oxford University Press.
  31. Tieszen, R. (2015). Arithmetic, mathematical intuition, and evidence. Inquiry: An Interdisciplinary Journal of Philosophy, 58(1), 28–56.
  32. van Heijenoort, J. (2002). From Frege to Gödel. A source book in mathematical logic, 1879–1931. Harvard University Press.
  33. Van-Quynh, A. (2019). The three formal phenomenological structures: A means to assess the essence of mathematical intuition. Journal of Consciousness Studies, 26(5–6), 219–241.
  34. Vasyukov, V. (2005). Kvantovaya logika [Quantum logic]. PER SE.
  35. Vizgin, V. (2007). Ideja mnozhestvennosti mirov [The idea of multiple worlds]. Izdatel’stvo LKI.
  36. Weinberg, J. M., Nichols, S., & Stich, S. (2001). Normativity and epistemic intuitions. Philosophical Topics, 29(1), 429–460.
  37. Yau, S., & Nadis, S. (2010). The shape of inner space: String theory and the geometry of the universe’s hidden dimensions. Basic Books.
  38. Zeh, H. D. (1970). On the interpretation of measurement in quantum theory. Foundations of Physics, 1, 69–76.
Language: English
Page range: 23 - 34
Published on: Jul 29, 2024
Published by: Sciendo
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2024 Ivan Karpenko, published by Sciendo
This work is licensed under the Creative Commons Attribution 4.0 License.