Have a personal or library account? Click to login
Back to the Future: The Rise of Human Enhancement and Potential Applications for Space Missions Cover

Back to the Future: The Rise of Human Enhancement and Potential Applications for Space Missions

By: Ben Cahill and  Martin Braddock  
Open Access
|Apr 2022

References

  1. 1. SIENNA: Technology, ethics and human rights. https://sienna-project.eu/ accessed June 21st 2021.
  2. 2. SIENNA D3.4: Ethical analysis of human enhancement technologies. https://ec.europa.eu/research/participants/documents/downloadPublic?documentIds=080166e5cf2e83d0&appId=PPGMS accessed June 21st 2021.
  3. 3. Ricci. G. Pharmacological human enhancement: an overview of the looming bioethical and regulatory challenges. Front. Psychiatry 11, 2020, 53.10.3389/fpsyt.2020.00053703702132127792
  4. 4. Braddock, M. Limitations for colonisation and civilisation build and the potential for human enhancements (Szocik, K. ed.). In: Human enhancements for space missions. Lunar, Martian and future missions to the outer planets, Springer publishers, 2020, pp.71-94.10.1007/978-3-030-42036-9_5
  5. 5. Lou, Z., Wang, L., Jiang, K., Wei, Z., Shen. G. Reviews of wearable healthcare systems: materials, devices and system integration. Materials Sci. Eng: R: Reports 140, 2020, 100523.
  6. 6. Chuang, A.T., Margo, C.E., Greenberg, P.B. Retinal implants: a systematic review. Brit. J. Ophthalmol. 98, 2014, pp. 852-856.10.1136/bjophthalmol-2013-30370824403565
  7. 7. Cinel, C., Valeriani, D., Poli, R. Neurotechnologies for human cognitive augmentation: current state of the art and future prospects. Front. Hum. Neurosci. 13, 2019, id13.10.3389/fnhum.2019.00013636577130766483
  8. 8. Herrojo, C,, Paredes, F., Mata-Contreras, J., Martín F. Chipless-RFID: A review and recent developments. Sensors 19, 2019, 3385.10.3390/s19153385669576731374987
  9. 9. Carrigan, M. & Porpora, D.V. (eds.). Post-human futures: human enhancement, artificial intelligence and social theory (1st edn.), 2021, Routledge publishers.10.4324/9781351189958-1
  10. 10. Johannes, M.S., Bigelow, J.D., Burck, J.M., Harshbarger, S.D., Kozlowski, M.V. et al. An overview of the developmental process for the modular prosthetic limb. Johns Hopkins APL Technical Digest 30, 2011, pp. 2017-2216.
  11. 11. Ortiz-Catalan, M., Mastinu, E., Sassu, P., Aszmann, O., Brånemark, R. Self-contained neuromusculoskeletal arm prostheses. New Engl. J. Med. 382, 2020, pp.1732-1738.10.1056/NEJMoa191753732348644
  12. 12. Yu, K.E., Perry, B.N., Moran, C.W., Arminger, R.S., Johannes, M.S. et al. Clinical evaluation of the revolutionizing prosthetics modular prosthetic limb system for upper extremity amputees. Sci. Rep. 11, 2021, 954.10.1038/s41598-020-79581-8780674833441604
  13. 13. Dermody, G., Whitehead, L., Wilson, G., Glass, C. The role of virtual reality in improving health outcomes for community-dwelling older adults: systematic review. J. Med. Internet Res. 22, 2020, e17331.10.2196/17331729641432478662
  14. 14. Jerdan, S.W., Grindle, M., van Woerden, H.C., Kamel Boulos, M.N. Head-mounted virtual reality and mental health: critical review of current research. JMIR Serious Games 6, 2018, e14.10.2196/games.9226605470529980500
  15. 15. Lu, T.C., Fu, C.M., Ma, M.H., Fang, C.C., Turner, A.M. Healthcare applications of smart watches. A systematic review. Appl. Clin. Inform. 7, 2016, pp.850-869.10.4338/ACI-2016-03-R-0042505255427623763
  16. 16. Siepmann, C., Kowalczuk, P. Understanding continued smartwatch usage: the role of emotional as well as health and fitness factors. Electron Markets. https://doi.org/10.1007/s12525-021-00458-3, accessed 21st June 2021.10.1007/s12525-021-00458-3
  17. 17. Czech, A. Brain-computer interface use to control military weapons and tools, In Paszkiel S (eds). Control, computer engineering and neuroscience. ICBCI 2021. Advances in intelligent systems and computing, vol 1362, 2021, Springer, Cham publishers.10.1007/978-3-030-72254-8_20
  18. 18. Braided Communications. https://www.f6s.com/braidedcommunications, accessed June 20th 2021.
  19. 19. Sawicki, G.S., Beck, O.N., Kang, I., Young, A.J.The exoskeleton expansion: improving walking and running economy. J. NeuroEngineering Rehabil. 17, 2020, 25.10.1186/s12984-020-00663-9702945532075669
  20. 20. Fosch-Villaronga, E., Özcan, B. The progressive intertwinement between design, human needs and the regulation of care technology: the case of lower-limb exoskeletons. Int. J. of Soc. Robotics 12, 2020, pp. 959–972.10.1007/s12369-019-00537-8
  21. 21. X1, https://www.nasa.gov/sites/default/files/atoms/files/fs-x1_fact_sheet.pdf, accessed 21st June 2021.
  22. 22. Hirakawa, M.P., Krishnakumar, R., Timlin, J.A., Carney, J.P., Butler, K.S. Gene editing and CRISPR in the clinic: current and future perspectives. Biosci. Rep. 40, 2020, BSR20200127.10.1042/BSR20200127714604832207531
  23. 23. Sun, Q.R.The legal risk of human enhancement technology and its regulation in China. Open J. Soc. Sci. 9, 2021, pp.39-53.10.4236/jss.2021.95004
  24. 24. Ethics of genome editing, European Commission 2021. https://ec.europa.eu/info/sites/default/files/research_and_innovation/ege/ege_ethics_of_genome_editing-opinion_publication.pdf. Accessed June 21st 2021.
Language: English
Page range: 17 - 21
Published on: Apr 5, 2022
Published by: University of Information Technology and Management in Rzeszow
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2022 Ben Cahill, Martin Braddock, published by University of Information Technology and Management in Rzeszow
This work is licensed under the Creative Commons Attribution 4.0 License.