Have a personal or library account? Click to login
Sustaining Resources for Homo Martis: The Potential Application of Synthetic Biology for the Settlement of Mars Cover

Sustaining Resources for Homo Martis: The Potential Application of Synthetic Biology for the Settlement of Mars

By: Rauf Sharpe and  Martin Braddock  
Open Access
|Apr 2022

References

  1. 1. Duffy, D. Elon Musk says SpaceX will get humans to Mars in 2026. https://www.businessinsider.co.za/elon-musk-spacex-starship-humans-mars-mission-2026-experts-question-2021-2. Accessed 11th May 2021.
  2. 2. Mars One Roadmap. https://www.mars-one.com/mission/roadmap. Accessed 11th May 2021.
  3. 3. How Investing in the Moon Prepares NASA for First Human Mission to Mars. https://www.nasa.gov/sites/default/files/atoms/files/moon-investments-prepare-us-for-mars.pdf. Accessed 1th May 2021.
  4. 4. Braddock, M, Wilhelm, CP, Romain, A, Bale L, Szocik, K. Application of socio-technical systems models to Martian colonisation and society build. Theoret. Issues Ergonomics Sci. 21, 2019, pp.131-152.10.1080/1463922X.2019.1658242
  5. 5. Vincente, K.J. Cognitive work analysis: towards safe, productive and health computer-based work. CRC press, 1999.
  6. 6. Naikar, N. Work domain analysis: concepts, guidelines and cases. CRC press, 2013.
  7. 7. Cooper, M., Douglas, D. & Perchonok, M. Developing the NASA food system for long-duration missions. J. Food Sci. 76, 2011, R40-R48.10.1111/j.1750-3841.2010.01982.x21535783
  8. 8. Verseux, C., Lima, I.G.P., Baque, M., Rothschild, M. Synthetic Biology for Space Exploration: Promises and Societal Implications. In: Ambivalences of Creating Life. Societal and Philosophical Dimensions of Synthetic Biology. Hagen, K., Engelhard, M., Toepfer (eds.), Springer-Verlag publishers, 2016, pp. 73-100.
  9. 9. Ishimatsu, T., Grogan, P., de Weck, O. Interplanetary Trajectory Analysis and Logistical Considerations of Human Mars Exploration J. Cosmol. 12, 2010, pp, 3588-3600.
  10. 10. Ogawa, N., Haruki, M., Kondoh, Y. et al. Orbit plan and mission design for Mars EDL and surface exploration technologies demonstrator. Trans. JSASS Aerospace Tech. 14, 2016, pp. 9-15.10.2322/tastj.14.Pk_9
  11. 11. Hohmann, W. The Attainability of Heavenly Bodies. In: NASA Technical Translation, F-44, 1960.
  12. 12. Jones, H.W. The recent large reduction in space launch cost. In: 48th International Conference on Environmental Systems, 2018, CES-2018-81, pp. 1-10.
  13. 13. Roberts, T.G. Space Launch to Low Earth Orbit: How Much Does It Cost? Civil and Commercial Space Space Security, 2020 https://aerospace.csis.org/data/space-launch-to-low-earth-orbit-how-much-does-it-cost/, accessed 28th April 2021.
  14. 14. World population projections. https://www.worldometers.info/world-population/world-population-projections/. Accessed 11th May 2021.
  15. 15. Eydelman, A. Temperature on the surface of Mars. The Physics Factbook. Elert, G. (ed.), 2001.
  16. 16. Mars facts, NASA (2013). https://web.archive.org/web/20130607140708/http:/quest.nasa.gov/aero/planetary/mars.html. Accessed April 28th 2021.
  17. 17. Mars fact sheet, NASA (2018). https://nssdc.gsfc.nasa.gov/planetary/factsheet/marsfact.html. Accessed May 10th 2021.
  18. 18. Matthiä, D. et al. The radiation environment on the surface of Mars – Summary of model calculations and comparison to RAD data. Life Sci. Space Res., 14, 2017, pp. 18-28.10.1016/j.lssr.2017.06.00328887939
  19. 19. Bloshenko, A.D., Robinson, J.M., Colon, R.A., Anchordoqui, L.A. Health threat from cosmic radiation during manned missions to Mars. arXiv:2012.09604v1.
  20. 20. Paris, J., Davis, E.T., Tognetti, L., Zahniser, C. Prospective Lava Tubes at Hellas Planitia, J. Wash. Acad. Sci. 2004.13156, 2019.
  21. 21. Voroney, R.P., Heck, R. J. The soil habitat. In: Soil microbiology, ecology and biochemistry (3rd ed.). Eldor, P.A. (ed.). Amsterdam, the Netherlands: Elsevier publishers. 2007, pp. 25–49.10.1016/B978-0-08-047514-1.50006-8
  22. 22. Needelman, B. A. What Are Soils? Nature Education Knowledge 4, 2013, 2.
  23. 23. Kalev, S.D., Toor, G.S. Chapter 3.9 - The Composition of soils and sediments. In: Green Chemistry. Torok, B., Dransfield, T. (eds.) Elsevier publishers, 2018, pp. 339-357.10.1016/B978-0-12-809270-5.00014-5
  24. 24. McSween, H.Y., Taylor, G.J., Wyatt, M.B. Elemental Composition of the Martian Crust. Science, 324, 2009, pp. 736-739.10.1126/science.116587119423810
  25. 25. Cousin, A., Meslin, P.Y., Wiens, R.C. et al. Compositions of coarse and fine particles in martian soils at gale: A window into the production of soils. Icarus, 249, 2015, pp.22-42.10.1016/j.icarus.2014.04.052
  26. 26. Ming, D. W., Morris, R. V. Dust in the Atmosphere of Mars and Its Impact on Human Exploration. In: Proceedings of the LPI, contribution No. 1966, 2017, id.6027.
  27. 27. Bohle, S., Montaño, H.S.P., Bille, M., Turnbull, D. Evolution of soil on Mars. Astron. & Geophys., 57, 2016, pp. 2.18–2.23.10.1093/astrogeo/atw071
  28. 28. Ramkissoon, N.K., Pearson, V.K., Schwenzer, S.P. et al. New simulants for Martian regolith: Controlling iron variability. Planetary Space. Sci., 179, 2019, 104722.10.1016/j.pss.2019.104722
  29. 29. Braddock, M. Mission to Mars: Countdown to Building a Brave New World – Laying the Foundations. In: Yearbook of Astronomy. Jones, B. (ed.), White Owl publishers 2022, In press.
  30. 30. Hecht, M. H., Kounaves, S.P., Quinn, R.C. et al. Detection of perchlorate and the soluble chemistry of Martian soil at the Phoenix Lander Site. Science 325, 2009, pp. 64–67.10.1126/science.117246619574385
  31. 31. Davila, A.F., Willson, D., Coates, J.D. & McKay, C.P. Perchlorate on Mars: a chemical hazard and a resource for humans. Int. J. Astrobiol. 12, 2013, pp 321-325.10.1017/S1473550413000189
  32. 32. Glavin, D., Grotzinger, J.P. Evidence for perchlorates and the origin of chlorinated hydrocarbons detected by SAM at the Rocknest aeolian deposit in Gale Crater. J. Geophys. Res. Planets 118, 2013, pp.1955–1973.10.1002/jgre.20144
  33. 33. Niziński P, Błażewicz A, Kończyk J, Michalski R. Perchlorate - properties, toxicity and human health effects: an updated review. Rev. Environ. Health. 2020, doi: 10.1515/reveh-2020-0006.10.1515/reveh-2020-000632887207
  34. 34. He, H., Gao, H. Chen, G. et al. Effects of perchlorate on growth of four wetland plants and its accumulation in plant tissues. Environ. Sci. Poll. Res. Int. 20, 2013, pp. 7301-7308.10.1007/s11356-013-1744-423673920
  35. 35. Wadsworth, J., Cockell, C.S. Perchlorates on Mars enhance the bacteriocidal effects of UV light. Sci. Rep. 7, 2017, 4662.
  36. 36. Carrier, B.L. Kounaves, S.P. The origins of perchlorate in the Martian soil. Geophys. Res. Lett. 42, 2015, pp. 3739–3745.10.1002/2015GL064290
  37. 37. Race, M.S., Moses, J., McKay, C., Venkateswaran, K.J. Synthetic biology in space: considering the broad societal and ethical implications. Int. J. Astrobiol. 11, 2012, pp. 133-139.10.1017/S1473550412000018
  38. 38. Menezes, A.A., Montague, M.G., Cumbers, J., Hogan, J.A., Arkin, A.P. Grand challenges in space synthetic biology. J. R. Soc. Interface 12, 2015, 20150803.10.1098/rsif.2015.0803470785226631337
  39. 39. Llorente, B., Williams, T.C., Goold, H.D. The multiplanetary future of plant synthetic biology. Genes, 9, 2018, 348.10.3390/genes9070348607103129996548
  40. 40. McNulty, M.J., Xiong, Y., Yates, K. et al. Molecular pharming to support human life on the moon, Mars, and beyond. Preprints 2020, 2020090086.10.20944/preprints202009.0086.v1
  41. 41. Nangle, S.N., Wolfson, M.Y., Hartsough, L. et al. The case for biotech on Mars. Nat. Biotechnol. 38, 2020, pp. 401–407.10.1038/s41587-020-0485-432265561
  42. 42. Patel, Z.S., Brunstetter, T.J., Tarver, W.J. Red risks for a journey to the red planet: the highest priority human health risks for a mission to Mars. npj Microgravity 6, 2020, 33.10.1038/s41526-020-00124-6764568733298950
  43. 43. Duncan, P.B., Morrison, R.D., Vavricka, E. Forensic identification of anthropogenic and naturally occurring sources of perchlorate. Environ. Forensics. 6, 2005, pp.205–215.10.1080/15275920590952883
  44. 44. Cole-Dai, J., Peterson, K.M., Kennedy, J.A., Cox, T.S., Ferris, D.G. Evidence of influence of human activities and volcanic eruptions on environmental perchlorate from a 300-year Greenland ice core record. Environmental Science & Technology, 52, 2018, pp. 8373–8380.10.1021/acs.est.8b0189029943569
  45. 45. Acevedo-Barrios, R., Sabater-Marco, C., Olivero-Verbel, J. Ecotoxicological assessment of perchlorate using in vitro and in vivo assays. Environmental Science and Pollution Research, 25, 2018, pp. 13697–13708.10.1007/s11356-018-1565-629504076
  46. 46. Maffini, M.V., Trasande, L., Neltner, T.G. Perchlorate and diet: human exposures, risks, and mitigation strategies. Current Environmental Health Reports, 3, 2016 pp. 107–117.10.1007/s40572-016-0090-327029550
  47. 47. Smith, P.N. In: The Ecotoxicology of Perchlorate in the Environment BT-Perchlorate: Environmental Occurrence, Interactions and Treatment, Gu, B and Coates, J.D. (eds.), Boston, USA, Springer publishers 2006.
  48. 48. Knight, B.A., Shields, B.M., He, X. et al. Effect of perchlorate and thiocyanate exposure on thyroid function of pregnant women from South-West England: a cohort study. Thyroid Res., 11, 2018, 9.10.1186/s13044-018-0053-x603547630002731
  49. 49. Steinmaus, C., Pearl, M., Kharrazi, M. et al. Thyroid hormones and moderate exposure to perchlorate during pregnancy in women in southern California. Environ. Health Perspect., 124, 2016, pp. 861–867.10.1289/ehp.1409614489291326485730
  50. 50. Srinivasan, A., Viraraghavan, T. Perchlorate: health effects and technologies for its removal from water resources. Int. J. Environ. Res. Public Health 6, 2009, pp 1418-1442.10.3390/ijerph6041418268119119440526
  51. 51. Orris, G.J., Harvey, G.J., Tsui, D.T., Eldrige, J.E. Preliminary analyses for perchlorate in selected natural materials and their derivative products. USGS, 2003. https://www.fws.gov/uploadedFiles/AR%200025%202003%20Preliminary%20analyses%20for%20perchlorate%20in%20selected%20natural%20materials%20and%20their%20derivative%20products.pdf accessed on 10th May 2021.
  52. 52. Wang, O., Coates, J.D. Biotechnological Applications of Microbial (Per)chlorate Reduction. Microorganisms. 5, 2017, pp, 76.10.3390/microorganisms5040076574858529186812
  53. 53. Arkin, A. A Synthetic Biology Architecture to Detoxify and Enrich Mars Soil for Agriculture, 2017. https://www.nasa.gov/directorates/spacetech/niac/2017_Phase_I_Phase_II/Mars_Soil_Agriculture/. Accessed on April 27th 2021.
  54. 54. Venturelli, O S; Egbert, R G; Arkin, A P. Towards engineering biological systems in a broader context. J. Mol. Biol., 428, 2016, pp. 928–944.10.1016/j.jmb.2015.10.02526546279
  55. 55. Enrichment of Martian regolith to useful agricultural soil. https://cubes.space/divisions/mmfd. Accessed May 11th 2021.
  56. 56. Orosei, R., Lauro, S.E., Pettinelli, E. et al. Radar evidence for subglacial liquid water on Mars. Science, 361, 2018, pp. 490-493.10.1126/science.aar726830045881
  57. 57. Nazari-Sharavian, M., Aghababaei, M., Karakouzian, M., Karami, M. Water on Mars – a literature review. Galaxies 8, 2020, 40.10.3390/galaxies8020040
  58. 58. Joseph, R., Gibson, C.H., Schild, R. Water, ice, mud in the Gale crater: implications for life on Mars. J. Cosmol. 29, 2020, pp. 1-33.10.1515/astro-2020-0019
  59. 59. Scheller, E.L., Ehlmann, B.L., Hu, R., Adams, D.J., Yung, Y.L. Long-term drying of Mars by sequestration of ocean-scale volumes of water in the crust. Science, 372, 2021, pp. 56-62.10.1126/science.abc7717837009633727251
  60. 60. Rosa, L. et al. Global agricultural economic water scarcity. Science Advances 6, 2020, eaaz6031.10.1126/sciadv.aaz6031719030932494678
  61. 61. Mekonnen, M.M., Gerbens-Leenes, W. The water footprint of global food production. Water 12, 2020, 2696.10.3390/w12102696
  62. 62. Yang, X., Cushman, J.C., Borland, A.M., Liu, Q. Editorial: Systems Biology and Synthetic Biology in Relation to Drought Tolerance or Avoidance in Plants. Front. Plant Sci. 11, 2020, 394.10.3389/fpls.2020.00394716143132328077
  63. 63. Głowacka, K., Kromdijk, J., Kucera, K. et al. Photosystem II Subunit S overexpression increases the efficiency of water use in a field-grown crop. Nat. Commun. 9, 2018, 868.10.1038/s41467-018-03231-x584041629511193
  64. 64. Park, S.-Y. et al. Agrochemical control of plant water use using engineered abscisic acid receptors. Nature, 520, 2015, pp. 545-548.10.1038/nature1412325652827
  65. 65. Sanghera, G.S., Wani, S.H., Hussain, W., Singh, N.N. Engineering cold stress tolerance in crop plants. Curr. Genomics 12, 2011, pp. 30-43.10.2174/138920211794520178312904121886453
  66. 66. Wisniewski, M., Nassuth, A., Arora, R. (2018). Cold hardiness in trees: a mini-review. Front. Plant Sci. 9, 2018, 1394.
  67. 67. Joshi R., Singh, B., Chinnusamy, V. Genetically Engineering Cold Stress-Tolerant Crops: Approaches and Challenges. In: Cold Tolerance in Plants, Wani S., Herath V. (eds). Springer, Cham. 2020, pp. 179-195.10.1007/978-3-030-01415-5_10
  68. 68. Singh, A,, Grover, A. Genetic engineering for heat tolerance in plants. Physiol. Mol. Biol. Plants. 14, 2008, pp. 155-166.10.1007/s12298-008-0014-2355065523572882
  69. 69. Jia, Y., Ding, Y., Shi Y. et al. The cbfs triple mutants reveal the essential functions of CBFs in cold acclimation and allow the definition of CBF regulons in Arabidopsis. New Phytol. 212, 2016, pp. 345–353.10.1111/nph.1408827353960
  70. 70. Zhao C., Zhang Z., Xie S., Si T., Li Y., Zhu J. K. Mutational evidence for the critical role of CBF transcription factors in cold acclimation in Arabidopsis. Plant Physiol. 171, 2016, pp. 2744–2759.10.1104/pp.16.00533497228027252305
  71. 71. Kumar SR, Kiruba R, Balamurugan S, Cardoso HG, Birgit A-S, et al. Carrot antifreeze protein enhances chilling tolerance in transgenic tomato. Acta Physiologiae Plantarum, 36, 2014, pp. 21-27.10.1007/s11738-013-1383-x
  72. 72. Zaidi, S.SeA., Mahas, A., Vanderschuren, H. et al. Engineering crops of the future: CRISPR approaches to develop climate-resilient and disease-resistant plants. Genome Biol. 21, 2020, 289.10.1186/s13059-020-02204-y770269733256828
  73. 73. Bouis, H. E., Saltzman, A. Improving nutrition through biofortification: A review of evidence from HarvestPlus, 2003 through 2016. Glob. Food Sec.12, 2017, pp.49-58.10.1016/j.gfs.2017.01.009543948428580239
  74. 74. Bhullar, N.K. Gruissem, W. Nutritional enhancement of rice for human health: the contribution of biotechnology. Biotechnol. Adv. 31, 2013, pp. 50-57.10.1016/j.biotechadv.2012.02.00122343216
  75. 75. Ye, X., Al-Babili, S., Klöti, A. et al. Engineering the provitamin A (beta-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science 287, 2000, pp. 303–305.10.1126/science.287.5451.30310634784
  76. 76. Paine, J.A., Shipton, C.A., Chaggar, S. et al. Improving the nutritional value of Golden Rice through increased pro-vitamin A content. Nat. Biotechnol. 23, 2005, pp. 482–487.10.1038/nbt108215793573
  77. 77. Datta, S.K., Datta, K., Parkhi, V. et al. Golden rice: introgression, breeding, and field evaluation. Euphytica, 154, 2007, pp. 271–278.10.1007/s10681-006-9311-4
  78. 78. Tang, G., Qin, J., Dolnikowski, G.G., Russell, R.M., Grusak, M.A. Golden rice is an effective source of vitamin A. Am. J. Clin. Nutr. 89, 2009, pp. 1776–1783.10.3945/ajcn.2008.27119268299419369372
  79. 79. New Plant Variety Consultation: FDA (2018). https://www.cfsanappsexternal.fda.gov/scripts/fdcc/index.cfm?set=NewPlantVarietyConsultations. Accessed December 12th 2020.
  80. 80. Provitamin A Biofortified Rice Event GR2E (Golden Rice): Health Canada (2018).https://www.canada.ca/en/health-canada/services/food-nutrition/genetically-modified-foods-other-novel-foods/approved-products/golden-rice-gr2e.html. Accessed 28th April 2021.
  81. 81. Sautter, C., Poletti, S., Zhang, P., Gruissem, W. Biofortification of essential nutritional compounds and trace elements in rice and cassava. Proc. Nutr. Soc. 65, 2006, pp. 153–159.10.1079/PNS200648816672076
  82. 82. Diretto G, Al-Babili S, Tavazza R. et al. Metabolic engineering of potato carotenoid content through tuber-specific overexpression of a bacterial mini-pathway. PLoS ONE 2, 2007, e350.10.1371/journal.pone.0000350183149317406674
  83. 83. Díaz de la Garza, R.I., Gregory III, G.F., Hanson, A.D. Folate biofortification of tomato fruit. Proc. Natl. Acad. Sci. USA, 104, 2007, pp. 4218-4222.10.1073/pnas.0700409104181033217360503
  84. 84. Narayanan, N., Beyene, G., Chauhan R.,D. et al. Biofortification of field-grown cassava by engineering expression of an iron transporter and ferritin. Nat. Biotechnol. 37, 2019, pp. 144-151.10.1038/s41587-018-0002-1678489530692693
  85. 85. Connor, M.R., Atsumi, S. Synthetic biology guide biofuel production. BioMed Res. Int. 2010, 2010, 54169810.1155/2010/541698293519620827393
  86. 86. Khatib, S.E., Yassine, N.A. Advances in Synthetic Biology and Metabolic Engineering in the Production of Biofuel. Int. J. Curr. Microbiol. App. Sci., 8, 2019, pp. 1762-1772.10.20546/ijcmas.2019.809.204
  87. 87. Mortimer JC. Plant synthetic biology could drive a revolution in biofuels and medicine. Experimental Biology and Medicine. 244, 2019, pp,323-331.10.1177/1535370218793890643588530249124
  88. 88. Verseux, C. et al. Sustainable life support on Mars – the potential roles of cyanobacteria. Int. J. Astrobiol. 15, 2016, pp. 65-92.10.1017/S147355041500021X
  89. 89. Getting there and back. In: Human missions to Mars. Springer Praxis Books. Springer, Berlin, Heidelberg, 2008.
  90. 90. Merino, N., Aronson, H.S., Bojanova, D.P. Living at the Extremes: Extremophiles and the Limits of Life in a Planetary Context. Front. Microbiol., 10, 2019, 780.10.3389/fmicb.2019.00780647634431037068
  91. 91. Schröder, C., Burkhardt, C. & Antranikian, G. What we learn from extremophiles. ChemTexts 2020, 6, 8.10.1007/s40828-020-0103-6
  92. 92. Ginsburg, I., Lingam, M., Loeb, A. Galactic panspermia. Astrophys. J. Lett., 868, 2018, L12.10.3847/2041-8213/aaef2d
  93. 93. Wassmann, M., Moeller, R., Rabbow, E. et al. Survival of spores of the UV-resistant Bacillus subtilis strain MW01 after exposure to low-earth orbit and simulated Martian conditions: data from the space experiment ADAPT on EXPOSE-E. Astrobiology, 12, 2012, pp. 498-507.10.1089/ast.2011.077222680695
  94. 94. Santomartino, R., Waajen, A.C., de Wit, W. No effect of microgravity and simulated Mars gravity on final bacterial cell concentrations on the International Space Station: applications to space bioproduction. Front. Microbiol. 11, 2020, 579156.10.3389/fmicb.2020.579156759170533154740
  95. 95. Braddock, M. Limitations for colonisation and civilisation build and the potential for human enhancements. In: Human Enhancements for Space Missions. Space and Society. Szocik K. (eds) Springer, Cham. publishers 2020, pp. 71-93.10.1007/978-3-030-42036-9_5
  96. 96. Ilardo M, Nielsen R. Human adaptation to extreme environmental conditions. Curr. Opin. Genet. Dev. 53, 2018, pp. 77-82.10.1016/j.gde.2018.07.003719376630077046
  97. 97. Burtscher, M., Gatterer, H., Burtscher, J., Mairbäurl, H. Extreme terrestrial environments: life in thermal stress and hypoxia. A narrative review. Front. Physiol. 9, 2018, 572.10.3389/fphys.2018.00572596429529867589
  98. 98. Clemente F.J. et al. A selective sweep on a deleterious mutation in CPT1A in Arctic populations. Am. J. Hum. Genet. 95, 2014, pp.584–589.10.1016/j.ajhg.2014.09.016422558225449608
  99. 99. Fumagalli, M. et al.: Greenlandic Inuit show genetic signatures of diet and climate adaptation. Science, 349, 2015, pp.1343–1347.10.1126/science.aab231926383953
  100. 100. Key F.M. et al. Human local adaptation of the TRPM8 cold receptor along a latitudinal cline. PLoS Genet. 14, 2018, e1007298.10.1371/journal.pgen.1007298593370629723195
  101. 101. Bigham A.W. Identifying positive selection candidate loci for high-altitude adaptation in Andean populations. Hum. Genomics 4, 2009, pp.79–90.10.1186/1479-7364-4-2-79285738120038496
  102. 102. Simonson, T.S, et al. Genetic evidence for high-altitude adaptation in Tibet. Science. 2010 329, 2010, pp. 72-75.
  103. 103. Simonson, T.S., McClain, D.A., Jorde, L.B., Prchal, J.T. Genetic determinants of Tibetan high-altitude adaptation. Hum. Genet. 2012,131, pp.527-533.
  104. 104. Hanaoka M. et al. Genetic variants in EPAS1 contribute to adaptation to high-altitude hypoxia in Sherpas. PLoS One. 7, 2012, 50566.10.1371/journal.pone.0050566351561023227185
  105. 105. MacInnis MJ, Wang P, Koehle MS, Rupert JL. The genetics of altitude tolerance: the evidence for inherited susceptibility to acute mountain sickness. J. Occup. Environ. Med. 53, 2011, pp.159-168.10.1097/JOM.0b013e318206b11221270658
  106. 106. Peng Y, et al. Genetic variations in Tibetan populations and high-altitude adaptation at the Himalayas. Mol. Biol. Evol. 28, 2011, pp, 1075-1081.10.1093/molbev/msq29021030426
  107. 107. van Patot MC, Gassmann M. Hypoxia: adapting to high altitude by mutating EPAS-1, the gene encoding HIF-2α. High Alt. Med. Biol. 2011 12, 2011, pp.157-167.
  108. 108. Zhou D. et al. Whole-genome sequencing uncovers the genetic basis of chronic mountain sickness in Andean highlanders. Am. J. Hum. Genet. 93, 2013, pp. 452-62.10.1016/j.ajhg.2013.07.011376992523954164
  109. 109. Valverde G. et al. A novel candidate region for genetic adaptation to high altitude in Andean populations. PLoS One 10, 2015, 0125444.10.1371/journal.pone.0125444442740725961286
  110. 110. Angelin-Duclos, C. et al. Thyroid hormone T3 acting through the thyroid hormone α receptor is necessary for implementation of erythropoiesis in the neonatal spleen environment in the mouse. Development 132, 2005, pp. 925–934.10.1242/dev.0164815673575
  111. 111. Ilardo, M.A. et al. Physiological and genetic adaptations to diving in sea nomads. Cell, 173, 2018, pp. 569–580.10.1016/j.cell.2018.03.05429677510
  112. 112. Hickey, L.T., Hafeez, A.N., Robinson, H. et al. Breeding crops to feed 10 billion. Nat. Biotechnol. 37, 2019, pp. 744–754.10.1038/s41587-019-0152-931209375
  113. 113. Voigt, C.A. Synthetic biology 2020-2030: six commercially-available products that are changing the world. Nat Commun. 11, 2020, article 6379.10.1038/s41467-020-20122-2773342033311504
  114. 114. Brooks, S.M., Alper, H.S. Applications, challenges, and needs for employing synthetic biology beyond the lab. Nat. Commun. 2021, 12, 1390.
  115. 115. Reynolds, J.L. Engineering biological diversity: the international governance of synthetic biology, gene drives and de-extinction for conservation. Curr. Op. Environ. Sust. 49, 2021, pp. 1-6.10.2139/ssrn.3688323
  116. 116. Del Valle, I., Fulk, E.M., Kalvapalle, P. et al. Translating new synthetic biology advances for biosensing into the Earth and environmental sciences. Front. Microbiol. 11, 2021, article 618373.10.3389/fmicb.2020.618373790189633633695
  117. 117. Douglas, T., Savulescu, J. Synthetic biology and the ethics of knowledge. J. Med. Ethics. 36, 2010, pp. 687-694.10.1136/jme.2010.038232304587920935316
  118. 118. Wang, F., Zhang, W. Synthetic biology: recent progress, biosafety and biosecurity concerns, and possible solutions. J. Biosafety & Biosecurity 1, 2019, pp. 22-30.10.1016/j.jobb.2018.12.003
  119. 119. Conde-Pueyo N, Vidiella B, Sardanyés J, et al. Synthetic biology for terraformation lessons from Mars, Earth, and the microbiome. Life 10, 2020:14.10.3390/life10020014717524232050455
Language: English
Page range: 1 - 16
Published on: Apr 5, 2022
Published by: University of Information Technology and Management in Rzeszow
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2022 Rauf Sharpe, Martin Braddock, published by University of Information Technology and Management in Rzeszow
This work is licensed under the Creative Commons Attribution 4.0 License.