Have a personal or library account? Click to login
Anti-foundationalist Philosophy of Mathematics and Mathematical Proofs Cover

Anti-foundationalist Philosophy of Mathematics and Mathematical Proofs

Open Access
|Nov 2020

References

  1. 1. Asprey, W., and P. Kitcher (eds.). History and philosophy of modern mathematics, Minneapolis: University of Minnesota Press, 1988.
  2. 2. Brown, J. R. Philosophy of Mathematics. A Contemporary Introduction to the World of Proofs and Pictures, New York and London: Routledge, 1999, 20082.
  3. 3. Byers, W. How Mathematicians Think; Using Ambiguity, Contradiction, and Paradox to Create Mathematics, Princeton: Princeton University Press, 2007.
  4. 4. Cellucci, C. Why Proof? What is a Proof? In G. Corsi and R. Lupacchini (eds.), Deduction, Computation, Experiment. Exploring the Effectiveness of Proof, Berlin: Springer-Verlag, 2008, pp. 1-27.10.1007/978-88-470-0784-0_1
  5. 5. Cellucci, Carlo. Rethinking logic: Logic in relation to mathematics, evolution, and method, Dordrecht: Springer 2013.10.1007/978-94-007-6091-2
  6. 6. Cellucci, C. Rethinking knowledge: The heuristic view, Dordrecht: Springer, 2017.10.1007/978-3-319-53237-0
  7. 7. Davis, P. J., and R. Hersh. The Mathematical Experience, Boston, Basel, Berlin: Birkhäuser, 1981, 19952.
  8. 8. Dehaene, S. The Number Sense: How the Mind Creates Mathematics, Oxford: Oxford University Press, 1997.
  9. 9. Enayat, A, and A. Visser. New constructions of satisfaction classes. Unifying the philosophy of truth, pp. 321-335, Logic, Epistemology, and the Unity of Science 36, Dordrecht: Springer, 2015.10.1007/978-94-017-9673-6_16
  10. 10. Epstein, R. L. Five Ways of Saying “Therefore” Arguments, Proofs, Conditionals, Cause and Effect, Explanations, Belmont, CA: Wadsworth/Thomson Learning, 2002.
  11. 11. Ernest, P. Social Constructivism as a Philosophy of Mathematics, Albany, NY: SUNY Press, 1998.
  12. 12. Friend, M. Pluralism in Mathematics: A New Position in Philosophy of Mathematics, Dodrecht: Springer, 2014.10.1007/978-94-007-7058-4
  13. 13. Giaquinto, M. Visualising in Mathematics, In P. Mancosu (ed.), The Philosophy of Mathematical Practice, Oxford: Oxford University Press, 2008, pp. 22-42.
  14. 14. Hardy, G. H. Mathematical Proof, Mind 38 (1928), pp. 1-25.10.1093/mind/XXXVIII.149.1
  15. 15. Hersh, R. Some proposals for reviving the philosophy of mathematics, Advances in Mathematics 31, 31-50, reprinted in T. Tymoczko (ed.), New Directions in the Philosophy of Mathematics, An Antology, Basel: Birkhäuser, 1986.10.1016/0001-8708(79)90018-5
  16. 16. Hersh, R. Math Has a Front and a Back, Eureka 1988, and Synthese 88 (2), 1991.10.1007/BF00567741
  17. 17. Hersh, R. Proving is convincing and explaining, Educational Studies in Mathematics 24, 1993, pp. 389-399.10.1007/BF01273372
  18. 18. Hersh, R. What Is Mathematics, Really? Oxford: Oxford University Press, 1997.10.1515/dmvm-1998-0205
  19. 19. Hersh, R. (ed.). 18 Unconventional Essays on the Nature of Mathematics, New York: Springer, 2006.10.1007/0-387-29831-2
  20. 20. Hersh, R. Experiencing mathematics: What do we do, when we do mathematics? Providence: American Mathematical Society, 2014.
  21. 21. Kitcher, P. The Nature of Mathematical Knowledge, Oxford: Oxford University Press, 1985.10.1093/0195035410.001.0001
  22. 22. Kotlarski, H., S. Krajewski, and A. H. Lachlan. Construction of satisfaction classes for nonstandard models, Canadian Math. Bulletin 24, 1981, pp. 283-293.10.4153/CMB-1981-045-3
  23. 23. Krajewski, S. Remarks on Mathematical Explanation, In B. Brozek, M. Heller and M. Hohol (eds.), The Concept of Explanation, Kraków: Copernicus Center Press, 2015, pp. 89-104.
  24. 24. Krajewski, S. On Suprasubjective Existence in Mathematics, Studia semiotyczne XXXII (No 2), 2018, pp. 75-86.
  25. 25. Lakatos, I. Proofs and refutations; The logic of mathematical discovery, edited by J. Worral and E. Zahar, Cambridge: Cambridge University Press 1976, 20152. (Original papers in British Journal for the Philosophy of Science 1963-64.)
  26. 26. Lakatos, I. A renaissance of empiricism in the recent philosophy of mathematics? In I. Lakatos, Philosophical Papers, vol. 2, edited by J. Worrall and G. Curie, Cambridge: Cambridge University Press, 1978, pp. 24-42.
  27. 27. Lakoff, G., and R. E. Núñez. Where Mathematics Comes From. How the Embodied Mind Brings Mathematics into Being, New York: Basic Books, 2000.
  28. 28. Mancosu, P (ed.). The Philosophy of Mathematical Practice, Oxford: Oxford University Press, 2008.10.1093/acprof:oso/9780199296453.001.0001
  29. 29. Polya, G. Mathematics and Plausible Reasoning, vol I, Princeton: Princeton University Press, 1973.
  30. 30. Putnam, H. What is Mathematical Truth? In Philosophical Papers, vol. 1, Mathematics, Matter and Method, Cambridge: Cambridge University Press, 1975, pp. 60-78.
  31. 31. Rav, Y. Philosophical Problems of Mathematics in the Light of Evolutionary Epistemology, Philosophica 43, No. 1, 1989, pp. 49-78; also Chapter 5 in Hersh, R (ed.). 18 Unconventional Essays on the Nature of Mathematics, New York: Springer, 2006.
  32. 32. Rav, Y. Why Do We Prove Theorems? Philosophia Mathematica (3) 7, 1999, pp. 5-41.10.1093/philmat/7.1.5
  33. 33. Rav, Y. The Axiomatic Method in Theory and in Practice, Logique & Analyse 202, 2008, pp. 125-147.
  34. 34. Rotman, B. Toward a Semiotics of Mathematics, Semiotica 72, 1988, pp. 1-35.10.1515/semi.1988.72.1-2.37
  35. 35. Rotman, B. Ad Infinitum … the Ghost ln Turing’s Machine: Taking God Out Of Mathematics And Putting the Body Back In, Stanford, CA: Stanford University Press, 1993.10.1515/9781503622135
  36. 36. Rotman, B. Mathematics as Sign: Writing, Imagining, Counting, Stanford, CA: Stanford University Press, 2000.
  37. 37. Sriraman, B. (ed.). Humanizing Mathematics and its Philosophy. Essays Celebrating the 90th Birthday of Reuben Hersh, Basel: Birkhäuser 2017.10.1007/978-3-319-61231-7
  38. 38. Schmerl, J. Kernels, Truth and Satisfaction, to be published.
  39. 39. Tymoczko, T. The four-color problem and its philosophical significance, The Journal of Philosophy 76, 1979, pp. 57-83.10.2307/2025976
  40. 40. Tymoczko, T. (ed.), New Directions in the Philosophy of Mathematics, An Antology, Basel: Birkhäuser, 1986.
  41. 41. Wagner, R. Making and Breaking Mathematical Sense: Histories and Philosophies of Mathematical Practice, Princeton: Princeton University Press, 2017.10.23943/princeton/9780691171715.003.0002
  42. 42. White, L. The Locus of Mathematical Reality: An Anthropological Footnote, Philosophy of Science 14, 1947, pp. 289-303, reprinted in Hersh, R (ed.). 18 Unconventional Essays on the Nature of Mathematics, New York: Springer, 2006, pp. 304-319.10.1007/0-387-29831-2_17
  43. 43. Wilder, R. L. The Cultural Basis of Mathematics, in Proceedings of the International Congress of Mathematicians, AMS 1952, pp. 258-271.
  44. 44. Wilder, R. L. Mathematics as a cultural system, Oxford: Pergamon Press, 1981.
Language: English
Page range: 154 - 164
Published on: Nov 11, 2020
Published by: Sciendo
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2020 Stanisław Krajewski, published by Sciendo
This work is licensed under the Creative Commons Attribution 4.0 License.