1. Aschbacher, M. Highly complex proofs and implications of such proofs. Philosophical Transactions of the Royal Society (A) 363, 2005, pp. 2401–2406.10.1098/rsta.2005.1655
3. Barwise, J. An introduction to first-order logic, In J. Barwise (ed.), Handbook of Mathematical Logic, Amsterdam: North-Holland, 1977, pp. 5–46.10.1016/S0049-237X(08)71097-8
8. Gödel, K. Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme. I, Monatshefte für Mathematik und Physik 38, 1931, pp. 173-198. Reprinted with English translation: On formally undecidable propositions of Principia Mathematica and related systems, In Gödel K. Collected Works, vol. I: Publications 1929-1936, S. Feferman, J. W. Dawson, Jr., S. C. Kleene, G. H. Moore, R. M. Solovay and J. van Heijenoort eds.), New York: Oxford University Press, and Oxford: Clarendon Press, pp. 144–195.10.1007/BF01700692
9. Gödel K. Collected Works, vol. I: Publications 1929-1936, S. Feferman, J. W. Dawson, Jr., S. C. Kleene, G. H. Moore, R. M. Solovay and J. van Heijenoort eds.), New York: Oxford University Press, and Oxford: Clarendon Press.
13. Kotlarski, H., and Z. Ratajczyk. Inductive full saisfaction classes, Annals of Pure and Applied Logic 47, 1990, pp. 199-223.10.1016/0168-0072(90)90035-Z
14. Kotlarski, H., and Z. Ratajczyk. More on induction in the language with a full satisfaction class, Zeitschrift für Mathematische Logik und Grundlagen der Mathematik 36, 1990, pp. 441-454.10.1002/malq.19900360509
15. Krajewski, S. Non-standard satisfaction classes, In W. Marek, M. Srebrny and A. Zarach (eds.), Set Theory and Hierarchy Theory, Proc. Bierutowice Conf. 1975, Lecture Notes in Mathematics 537, Berlin-Heidelberg-New York: Springer Verlag, 1976, pp. 121-144.
17. Murawski R. Satisfaction classes – a survey, In R. Murawski and J. Pogonowski (eds.), Euphony and Logos, Amsterdam/Ątlanta, GA: Edition Rodopi, 1997, pp. 259–281.10.1163/9789004457560
18. Murawski, R. Recursive Functions and Metamathematics. Problems of Completeness and Decidability, Gödel’s Theorems, Dordrecht/Boston/London: Kluwer Academic Publishers, 1999.10.1007/978-94-017-2866-9_4
20. Murawski, R. On the distinction proof-truth in mathematics, In P. Gärdenfors et al. (eds.), In the Scope of Logic, Methodology and Philosophy of Science, Dordrecht–Boston–London: Kluwer Academic, 2002, pp. 287–303.
21. Murawski, R. Troubles with (the concept of) truth in mathematics, Logic and Logical Philosophy 15, 2006, pp. 285–303. Reprinted in: R. Murawski, Lógos and Máthēma. Studies in the Philosophy of Mathematics and History of Logic, Frankfurt am Main: Peter Lang International Verlag der Wissenschaften, 2011, pp. 187–201.10.12775/LLP.2006.017
22. Murawski, R. Some historical, philosophical and methodological remarks on proof in mathematics, In D. Probst and P. Schuster (Eds.), Concepts of Proof in Mathematics, Philosophy, and Computer Science, Ontos Mathematical Logic, Berlin: Walter de Gruyter, 2016, pp. 251–268.10.1515/9781501502620-015
24. Tarski, A. Pojęcie prawdy w językach nauk dedukcyjnych, Warszawa: Towarzystwo Naukowe Warszawskie, 1933, Wydział III Nauk Matematyczno–Fizycznych, vol. 34. Reprinted in: A. Tarski, Pisma logiczno-filozoficzne, vol. 1: Prawda, Warszawa: Wydawnictwo Naukowe PWN, 1995, pp. 131–172. English translation: The concept of truth in formalized languages, In A. Tarski, Logic, Semantics, Metamathematics. Papers from 1923 to 1938, Oxford: Clarendon Press, 1956, pp. 152–278 and in A. Tarski, Logic, Semantics, Metamathematics. Papers from 1923 to 1938, second edition edited and introduced by J. Corcoran, Indianapolis: Hackett Publishing Co., 1983, pp. 152–283.
28. Tarski, A. Logic, Semantics, Metamathematics. Papers from 1923 to 1938, second edition edited and introduced by J. Corcoran, Indianapolis: Hackett Publishing Co., 1983.