Have a personal or library account? Click to login
AI Case Studies: Potential for Human Health, Space Exploration and Colonisation and a Proposed Superimposition of the Kubler-Ross Change Curve on the Hype Cycle Cover

AI Case Studies: Potential for Human Health, Space Exploration and Colonisation and a Proposed Superimposition of the Kubler-Ross Change Curve on the Hype Cycle

Open Access
|Mar 2019

References

  1. 1. Fagella, D. What is Artificial Intelligence? An Informed Definition, Emerj, 2017, retrieved on February 16th 2019, https://emerj.com/ai-glossary-terms/what-is-artificial-intelligence-an-informed-definition/.
  2. 2. Turing, A. M. Computing machinery and intelligence, Mind 49, 1950, pp. 433-460.10.1093/mind/LIX.236.433
  3. 3. Definition of life in English. English Oxford living dictionaries, retrieved on February 16th 2019, https://en.oxforddictionaries.com/definition/life.
  4. 4. Life. The free dictionary, retrieved on February 16th 2019, https://www.thefreedictionary.com/life.
  5. 5. Sagan, D, Sagan, S., Margulis, L. Life biology. Encyclopaedia Brittanica, retrieved on February 16th 2019, https://www.britannica.com/science/life.
  6. 6. Chang, O, Lipson, D. Neural network quine, arXiv 1803.05859, 2018.10.1162/isal_a_00049
  7. 7. Alasaarela, D. The Rise of Emotionally Intelligent AI, Machine Learnings 2017, retrieved on February 15th 2019, https://machinelearnings.co/the-rise-of-emotionally-intelligent-ai-fb9a814a630e.
  8. 8. Ghaffarzadeh, K. Mobile Robots and Drones in Material Handling and Logistics 2018-2038, IDTechEx, retrieved on February 15th 2019, http://www.idtechex.com/research/reports/mobile-robots-and-drones-in-material-handling-and-logistics-2018-2038-000548.asp.
  9. 9. Stanley, K. O., Clune J. Welcoming the Era of Deep Neuroevolution, Uber Engineering 2017, retrieved on February 17th 2019, https://eng.uber.com/deep-neuroevolution/.
  10. 10. Lehman, J., Chen, J., Clune, J., Stanley, K. O. Safe mutations for deep and recurrent neural networks through output gradients, arXiv 1712.06563, 2018.10.1145/3205455.3205473
  11. 11. Lehman, J., Chen, J., Clune, J., Stanley, K. O. ES Is More Than Just a Traditional Finite-Difference Approximator, arXiv 1712.06568, 2018.10.1145/3205455.3205474
  12. 12. Hutson, M. Artificial intelligence can ‘evolve’ to solve problems, Science 2018, doi: 10.1126/science.aas9715.10.1126/.aas9715
  13. 13. Conti, E., Madhavan, V., Such, F. P., Lehman, J., Stanley, K. O., Clune, J. Improving exploration in evolution strategies for deep reinforcement learning via a population of noveltyseeking agents. arXiv 1712.06560, 2018.
  14. 14. Interpreting technology hype, Gartner, retrieved February 16th 2019, https://www.gartner.com/en/research/methodologies/gartner-hype-cycle.
  15. 15. Sicular, S., Brant, K. Hype Cycle for Artificial Intelligence, Gartner 2018, retrieved on February 17th 2018, https://www.gartner.com/doc/3883863/hype-cycle-artificial-intelligence-
  16. 6. Amara’s law, retrieved on February 17th 2018, https://web.archive.org/web/20180410135130/https://spotlessdata.com/blog/amaras-law.
  17. 17. Kubler-Ross, E. On death and dying, Routledge, 1969.
  18. 18. By, R. Organisational change management: a critical review, Journal of Change Management 5, 2005, pp. 369-380.10.1080/14697010500359250
  19. 19. Corr, C. A., Doka, A. J., Kastenbaum, R. Dying and its interpreters: a review of selected literature and some comments on the state of the field. OMEGA- Journal of Death and Dying 39, 1999, pp. 239-259.10.2190/3KGF-52BV-QTNT-UBMX
  20. 20. Stroebe, M., Schut, H., Boerner, K. Cautioning health-care professionals: bereaved persons are misguided through the stages of grief. OMEGA – Journal of Death and Dying 74, 2017, pp. 455-473.10.1177/0030222817691870537502028355991
  21. 21. Russell, S. J., Norvid, P. Artificial Intelligence: A Modern Approach (2nd ed.), Upper Saddle River, New Jersey: Prentice Hall, 2003.
  22. 22. Hendler, J. Avoiding another AI winter, Intelligent systems, IEEE 23, 2008, pp. 2-4.10.1109/MIS.2008.20
  23. 23. Enwall, T. Why the pursuit of a “killer app” for home robots is fraught with peril, IEEE Spectrum 2018 retrieved on February 17th 2019, https://spectrum.ieee.org/automaton/robotics/home-robots/why-the-pursuit-of-a-killer-app-for-home-robots-is-fraught-with-peril.
  24. 24. Turck, M. Frontier AI: How far are we from artificial ‘general’ intelligence, really? Retrieved on February 16th 2019, http://mattturck.com/frontierai/.
  25. 25. European Parliamentary Research Service. Should we fear artificial intelligence? European Parliament Think Tank 2018, retrieved on February 14th 2019, http://www.europarl.europa.eu/thinktank/en/document.html?reference=EPRS_IDA(2018)614547.
  26. 26. Fast, E., Horvitz, E. Long-term trends in the public perception of artificial intelligence, In Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence. International Joint Conferences on Artificial Intelligence, Inc., Menlo Park, CA, 2017, pp. 963-969.10.1609/aaai.v31i1.10635
  27. 27. Sharo, T., Korn, C. W., Dola, R. J. How unrealistic optimism is maintained in the face of reality, Nature Neuroscience 14, 2012, pp. 1475-1479.10.1038/nn.2949320426421983684
  28. 28. Hecht, D. The neural basis of optimism and pessimism, Experimental Neurobiology 22, 2013, pp. 173-199.10.5607/en.2013.22.3.173380700524167413
  29. 29. Stankevicius, A., Huys, Q. J. M., Kaira, A., Series, P. Optimism as a prior belief about the possibility of future reward, PLoS Computational Biology 10, 2014, e1003605.10.1371/journal.pcbi.1003605403104524853098
  30. 30. Tufts center for the study of drug development, retrieved on February 17th 2019, https://csdd.tufts.edu/.
  31. 31. Hughes, J. P., Rees, S., Kalindjian, S. B, et al. Principles of early drug discovery, British Journal of Pharmacology 162, 2011, pp. 1239-1249.10.1111/j.1476-5381.2010.01127.x305815721091654
  32. 32. Marsden, C. J., Eckersley, S., Hebditch, M. et al. The use of antibodies in small-molecule drug discovery, Journal of Biological Screening 19, 2014, pp. 829-838.10.1177/108705711452777024695620
  33. 33. Perez, H. L., Cardarelli, P. M., Deshpande, S., et al. Antibody-drug conjugates: current status and future directions, Drug Discovery Today 19, 2014, pp. 869-881.10.1016/j.drudis.2013.11.00424239727
  34. 34. Valeur, E., Jimonet, P. New modalities, technologies and partnerships in probe and lead generation: enabling a mode-of-action centric paradigm, Journal of Medicinal Chemistry 61, 2018, pp. 9004-9029.10.1021/acs.jmedchem.8b0037829851477
  35. 35. Valeur, E., Gueret, S. M., Adihou, H., et al. New modalities for challenging targets in drug discovery, Angewandte Chemie International Edition 56, 2017, pp. 10294-10323.10.1002/anie.20161191428186380
  36. 36. Monte, A. A., Brocker, C., Nebert, D. W., et al. Improved drug therapy: triangulating phenomics with genomics and metabolomics, Human Genomics 8, 2014, 16.10.1186/s40246-014-0016-9444568725181945
  37. 37. Schneider, G., Fechner, U. Computer-based de novo design of drug-like molecules, Nature Reviews Drug Discovery 4, 2005, pp. 649-663.10.1038/nrd179916056391
  38. 38. Duch, W., Swaminathan, K., Meller, J. Artificial intelligence approaches for rational drug design and discovery, Current Pharmaceutical Design 13, 2007, pp. 1497-1508.10.2174/13816120778076595417504169
  39. 39. Olivecrona, M., Blaschke, T., Engkvist, O., Chen, H. Molecular de novo design through deep reinforcement learning, Journal of Cheminformatics 9, 2017, 48.10.1186/s13321-017-0235-x558314129086083
  40. 40. Sellwood, M. A., Ahmed, M., Segler, M. H. S., Brown, N. Artificial intelligence in drug discovery, Future Medicinal Chemistry 10, 2018, pp. 2025-2028.10.4155/fmc-2018-021230101607
  41. 41. Segler, M. H. S., Kogej, T., Tyrchan, C., Waller, M. P. Generating focused molecule libraries for drug discovery with recurrent neural networks, ACS Central. Science 4, 2018, 120-131.10.1021/acscentsci.7b00512578577529392184
  42. 42. Hessler, G., Baringhaus, K.-H. Artificial intelligence in drug design, Molecules 23, 2018, 2520.10.3390/molecules23102520622261530279331
  43. 43. Benhenda, M. ChenGAN challenge for drug discovery: can AI reproduce natural chemical diversity? arXiv 1708.08227, 2017.10.1101/292177
  44. 44. Popova, M., Isayev, O., Tropsha, A. Deep reinforcement for drug design, Science Advances 4, 2018, eaap7855.10.1126/sciadv.aap7885605976030050984
  45. 45. Fleming, N. How artificial intelligence is changing drug discovery, Nature 557, 2018, pp. S55-S57.10.1038/d41586-018-05267-x29849160
  46. 46. Mak, K.-K., Pichika, M. R. Artificial intelligence in drug development: present status and future prospects, Drug Discovery Today 2018, https://doi.org/10.1016/j.drudis.2018.11.014.10.1016/j.drudis.2018.11.01430472429
  47. 47. Pushpakom, S., Iorio, F., Eyers, P. A., et al. Drug repurposing: progress, challenges and recommendations, Nature Reviews Drug Discovery 18, 2019, pp. 41-58.10.1038/nrd.2018.16830310233
  48. 48. Jordan, A. M. Artificial intelligence in drug design – the storm before the calm? ACS Medicinal Chemistry Letters 9, 2018, pp. 1150-1152.10.1021/acsmedchemlett.8b00500629584830613315
  49. 49. Lyu, J., Wang, S., Balius, T. E., et al. Ultra-large docking for discovering new chemotypes, Nature 566, 2019, pp. 224-229.10.1038/s41586-019-0917-9638376930728502
  50. 50. Topol, E. High-performance medicine: the convergence of human and artificial intelligence, Nature Medicine 25, 2019, pp. 44-56.10.1038/s41591-018-0300-730617339
  51. 51. Havelund, K., Lowry, M., Penix, J. Formal analysis of a space craft controller using SPIN, IEEE Transactions on Software Engineering 27, 2001, pp. 749-765.10.1109/32.940728
  52. 52. Daniela, G., Dario, I. Artificial intelligence for space applications, Intelligent Computing Everywhere 2007, pp. 235-253.10.1007/978-1-84628-943-9_12
  53. 53. Weir, N., Fayyad, U. M., Djorgovski, G., Roden, J. The SKICAT system for processing and analysing digital imaging sky surveys, Publications of the Astronomical Society of the Pacific 107, 1995, pp. 1243-1254.10.1086/133683
  54. 54. C. E. Petrillo, Totora, C., Chatterjee, S. et al. Finding strong gravitational lenses in the Kilo Degree Survey with convolutional neural networks, Monthly Notices of the Royal Astronomical Society 472, 2017, pp. 1129-1150.10.1093/mnras/stx2052
  55. 55. Estlin, T. A., Bornstein, B. J., Gaines, D. M., et al. AEGIS automated targeting for the MER Opportunity Rover, ACM Transactions on Intelligent Systems and Technology (TIST) 3, 2012.10.1145/2168752.2168764
  56. 56. Allwood, A. et al. Texture-specific elemental analysis of rocks and soils with PIXL: The Planetary Instrument for X-ray Lithochemistry on Mars 2020, IEEE Aerospace Conference Proceedings 2015.10.1109/AERO.2015.7119099
  57. 57. Prosser, P., Rebolledo, J. D. AI is kicking space exploration into hyperdrive—here’s how, Singularity Hub 2018, retrieved on February 17th 2019, https://singularityhub.com/2018/10/07/ais-kicking-space-exploration-into-hyperdrive-heres-how/#sm.000tm2cyt1cylenswso298wt2y6ec.
  58. 58. Bradford, J., Schaffer, M., Talk, D. Torpor inducing transfer habitat for human stasis for Mars, SpaceWorks Enterprises 2016.
  59. 59. Cerri, M., Tinganelli, W., Negrini, M. et al. Hibernation for space travel: Impact on radio protection, Life Sciences in Space Research 11, 2016, pp. 1-9.10.1016/j.lssr.2016.09.00127993187
  60. 60. Baird, D. NASA explores artificial intelligence for space communications 2017, Retrieved on February 17th 2019, https://www.nasa.gov/feature/goddard/2017/nasa-explores-artificial-intelligence-for-space-communications.
  61. 61. Chung, A., Ludivig, P., Potter, R. W. K., et al. Localization: or the importance of knowing where you are, Frontier Development Lab 2018, Handbook, pp. 38-39.
  62. 62. Buchheim, J., Alexander, C. Pilot Study with the Crew Interactive MObile companioN (Cimon) (Mobile Companion), Erasmus Experiment Archive 2018.
  63. 63. Pultarova, T. AI robot CIMON debuts at International Space Station, Space.com, retrieved on February 17th 2019, https://www.space.com/42574-ai-robot-cimon-space-station-experiment.html
  64. 64. Pimm, S. L, Jenkins, C. N., Abell, R., et al. The biodiversity of species and their rates of extinction, distribution and protection, Science 344, 2014, https://doi.org/10.1126/science.124675210.1126/.1246752
  65. 65. Ceballos, G., Ehrlich, P. R., Barnosky, A. D., et al. Accelerated modern human-induced species losses: entering the sixth mass extinction, Science Advances, 1(5), 2015, e1400253.10.1126/sciadv.1400253464060626601195
  66. 66. Clifford, C. Musk: ’Mark my words – A.I. is far more dangerous than nukes’, CNBC Make It 2018, retrieved on February 17th 2019, https://www.cnbc.com/2018/03/13/elon-musk-at-sxsw-a-i-is-more-dangerous-than-nuclear-weapons.html.
  67. 67. Galeon, D. Stephen Hawking: “I fear that AI may replace humans altogether”, WIRED 2017, retrieved on February 17th 2019, https://futurism.com/stephen-hawking-ai-replace-humans/.
  68. 68. Tegmark, M. Life 3.0. Being human in the age of artificial intelligence, Penguin Press, 2017.
  69. 69. Rees, M. On the future prospects for humanity, Princeton University Press, 2018.10.1515/9780691184401
  70. 70. Kaku, M. The future of humanity. Terraforming Mars, interstellar travel, immortality and our destiny beyond Earth, Penguin Books, 2018.
  71. 71. Evans, C. 1.7 million U.S Facebook users will pass away in 2018. The Digital Beyond 2018, retrieved on February 17th 2019, http://www.thedigitalbeyond.com/2018/01/1-7-million-u-sfacebook-users-will-pass-away-in-2018/.
  72. 72. Weisberger, M. Lifelike ‘Sophia’ robot granted citizenship to Saudi Arabia, Live Science, retrieved on February 15th 2019, https://www.livescience.com/60815-saudi-arabia-citizen-robot.html.
  73. 73. De Quetteville, H. This young man died in April. So how did our writer have a conversation with him last month? The Telegraph, retrieved on February 17th 2019, https://www.telegraph.co.uk/technology/2019/01/18/will-digital-soul/.
  74. 74. Ohman, C., Floridi, L. The potential economy of death in the age of information: a critical approach to the digital afterlife industry, Minds and Machines 27, 2017, pp. 639-662.10.1007/s11023-017-9445-2
  75. 75. Ohman, C., Floridi, L. An ethical framework for the digital afterlife industry, Nature Human Behaviour 2, 2018, pp. 318-320.10.1038/s41562-018-0335-230962597
  76. 76. Chien, S., Wagstaff, K. L. Robotic space exploration agents, Science Robotics 2, 2017, eaan4831.10.1126/scirobotics.aan483133157898
  77. 77. The pivotal role AI plays in the future of space travel. Ross, retrieved on February 17th 2019, https://blog.rossintelligence.com/post/ai-space-travel.
  78. 78. Campa, R., Szocik, K., Braddock, M. Why space colonisation will be fully automated, Technological Forecasting and Social Change 2019; in press.10.1016/j.techfore.2019.03.021
  79. 79. Braddock, M., Campa, R., Szocik, K. Ergonomic constraints for astronauts: challenges and opportunities today and for the future, Proceedings of the International Conference on Ergonomics and Human Factors 2019, Stratford-Upon-Avon, 29 April-1 May 2019, 1st Edition.
Language: English
Page range: 3 - 18
Published on: Mar 30, 2019
Published by: University of Information Technology and Management in Rzeszow
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2019 Matthew Williams, Martin Braddock, published by University of Information Technology and Management in Rzeszow
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.