Have a personal or library account? Click to login
Thermal consolidation of porous medium with a rheological kelvin–voigt skeleton Cover

Thermal consolidation of porous medium with a rheological kelvin–voigt skeleton

Open Access
|Oct 2012

References

  1. [1] AURIAULLT J.L., Dynamic behaviour of porous media, Transport Processes in Porous Media, Kluver Academic Publishers, 1991, 471-519.10.1007/978-94-011-3628-0_9
  2. [2] AURIAULT J.L., SANCHEZ PALENCIA E., Etude de comportement macroscopique d'un milieu poreuxsature deformable, Journal de Mecanique, 1977b, 16(4), 575-603.
  3. [3] AURIAULT J.L., STRZELECKI T., BAUER J., HE S., Porous deformable media by a very compressibleFluid, Eur. J. Mech. a/Solid, 1990, 9, 4, 373-392.
  4. [4] BARTLEWSKA-URBAN M., STRZELECKI T., One-dimensional consolidation of the porous medium withthe rheological Kelvin-Voigt skeleton, Studia Geotechnica et Mechanica, 2008, Vol. 30, No. 1/2, 115-122.
  5. [5] BARTLEWSKA M., The doctoral dissertation on the theme: Określenie parametrów efektywnychmodeli reologicznych gruntów spoistych, Politechnika Wrocławska, Faculty of Geoengineering, Mining and Geology, Wrocław, 2009.
  6. [6] BARTLEWSKA M., STRZELECKI T., Equations of Biots consolidation with Kelvin-Voight rheologicalframe, Studia Geotechnica et Mechanica, 2009, Vol. XXXI, No. 2, 3-15.
  7. [7] BARTLEWSKA M., STRZELECKI T., One-dimensional consolidation of the porous medium with theRheological Kelvin-Voight skeleton, Studia Geotechnica et Mechanica, 2008, Vol. XXX, No. 1-2.
  8. [8] BIOT M.A., General theory of three-dimensional consolidation, J. Appl. Phys., 1941, No. 12, 155.10.1063/1.1712886
  9. [9] BIOT M.A., General Solutions of the Equations of Elasticity and Consolidation of a Porous Material, J. Appl. Mech., 1956, 23.10.1115/1.4011213
  10. [10] BENSOUSSAN A., LIONS J.L., PAPANICOLAU G., Asymptotic analysis for periodic structures, North Holland Publishing Company, Amsterdam, 1978.
  11. [11] COUSSY O., Mechanics of Porous Continua, John Wiley & Sons, 1995.
  12. [12] COUSSY O., Mechanics and physics of porous solids, John Wiley & Sons, 2011.10.1002/9780470710388
  13. [13] KISIEL I., DERSKI W., IZBICKI R.J., MRÓZ Z., Mechanika skał i gruntów, series Mechanika Techniczna, Vol. VII, PWN, Warszawa, 1982.
  14. [14] KISIEL I., Reologiczne równania stanu ośrodków quasiliniowych, Polish Academy of Sciences, Wrocław Branch, Wrocław, 1980.
  15. [15] KOWALSKI S.J., MUSIELAK G., RYBICKI A., Drying Processes in Context of the Theory of FluidSaturated Porous Materials, J. Theoretical and Applied Mechanics, 1998, 36, 3.
  16. [16] KOWALSKI S.J., MUSIELAK G., RYBICKI A., Drying Processes in Context of the Theory of FluidSaturated Porous Materials, J. Theoretical and Applied Mechanics, 1998, 36, 3.
  17. [17] KOWALSKI S.J., MUSIELAK G., Drying Processes in Aspect of the Theory of the Fluid SaturatedPorous Materials, Proceedings of the Fifth International Conference on Composities Engineering, ICCE/5, ed. D. Hui, 1998, 487-488.
  18. [18] KOWALSKI S.J., MUSIELAK G., RYBICKI A., Theory of Drying Processes as an Aspect of Poromechanics, “Poromechanics - A Tribute to Maurice A. Biot”, ed. J.F. Thimus et al., 433-437, A.A. Balkema, Roterdam/Brookfield, 1998.10.1201/9781003078487-73
  19. [19] KRÖNER E., Effective elastic moduli of periodic and random media: a unification, Mechanics Research Communication, 1980, 7(5), 323-327.10.1016/0093-6413(80)90072-5
  20. [20] REINER M., Deformation, strain and flow, H. K. Lewis, London, 1960.10.1063/1.3057119
  21. [21] RUBINSTEIN J., TORQUATO S., Flow and random porous media: mathematical formulation, variationalprinciples and rigorous bounds, J. Fluid Mech., 1989, 206, 25-46.10.1017/S0022112089002211
  22. [22] SANCHEZ-PALENCIA E., Non homogeneous Media and Vibration Theory, Lecture Notes in Phisics, 127, Springer-Verlag, Berlin, 1980.
  23. [23] STRZELECKI T., Loi de comportement dans la theorie de la consolidation electrohydrodynamique, Stud. Geotech., 1979, Vol. 1, No. 3/4.
  24. [24] STRZELECKI T., Model termokonsolidacji gruntów ilastych z uwzględnieniem procesów elektrokinetycznych, Współczesne problemy naukowo badawcze budownictwa lądowego i wodnego, Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław, 2007.
  25. [25] STRZELECKI T., KOSTECKI S., ŻAK S., Modelowanie przepływów przez ośrodki porowate, Dolnośląskie Wydawnictwo Edukacyjne, 2008.
  26. [26] SZEFER G., Non-linear Problems of consolidations theory, Mat. III Kolokwium Polsko- Francuskiego, 22-24 kwietnia 1980.
  27. [27] STRZELECKI T., BARTLEWSKA-URBAN M., Numerical calculations of the consolidation of flotationwaste landfill “Żelazny Most” based on Biot’s model with the Kelvin-Voight rheological skeleton, Archives of Civil Engineering, Archives of Civil Engineering, 2011, Vol. 57, Iss. 2, 199-213.10.2478/v.10169-011-0015-3
  28. [28] Flex PDE v.6: www.pdesolutions.com
DOI: https://doi.org/10.2478/sgm031202 | Journal eISSN: 2083-831X | Journal ISSN: 0137-6365
Language: English
Page range: 17 - 35
Published on: Oct 1, 2012
Published by: Wroclaw University of Science and Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2012 Monika Bartlewska-Urban, Tomasz Strzelecki, published by Wroclaw University of Science and Technology
This work is licensed under the Creative Commons License.