Have a personal or library account? Click to login
Research on the failure behavior of cement- and fiber-reinforced sand under triaxial tensile loads Cover

Research on the failure behavior of cement- and fiber-reinforced sand under triaxial tensile loads

By: Hysen Ahmeti and  Ragip Behrami  
Open Access
|Aug 2025

References

  1. Kitazume, M., Maruyama, K. (2007). Internal stability of group column type deep mixing improved ground under embankment loading. Soils and Foundations, 47(3), 437-455. doi: 10.3208/sandf.47.437.
  2. Tokimatsu, K. Mizuno, H., Kakurai, M. (1966). Building damage associated with geotechnical problems. Soils and Foundations, 36, 219-234. doi: 10.3208/sandf.36.Special_219.
  3. Consoli, N.C., Dal Toé Casagrande, M., Coop, M.R. (2005). Behavior of a fiber-reinforced sand under large shear strains. In: Proceedings of the 16th International Conference on Soil Mechanics and Geotechnical Engineering, Osaka, Japan, pp. 1331-1334. doi: 10.3233/978-1-61499-656-9-1331.
  4. Latha, G.M., Murthy, V.S. (2007). Effects of reinforcement form on the behavior of geosynthetic reinforced sand. Geotextiles and Geomembranes, 25(1), 23-32. doi: 10.1016/j.geotexmem.2006.09.002.
  5. Lovisa, J., Shukla, S.K., Sivakugan, N. (2010). Shear strength of randomly distributed moist fibre-reinforced sand. Geosynthetics International, 17(2), 100-106. doi: 10.1680/gein.2010.17.2.100.
  6. Namikawa, T., Koseki, J., Suzuki, Y. (2007). Finite element analysis of lat- tice-shaped ground improvement by cement-mixing for liquefaction mitigation. Soils and Foundations, 47(3), 559-576. doi: 10.3208/sandf.47.559.
  7. Khosravi, M., Boulanger, R.W., Tamura, S., Wilson, D.W., Olgun, C.G., Wang, Y. (2016). Dynamic centrifuge tests of soft clay reinforced by soil–cement grids. Journal of Geotechnical and Geoenvironmental Engineering, 142(7), 04016027. doi: 10.1061/(ASCE)GT.1943-5606.0001487.
  8. Ibraim, E., Diambra, A., Russell, A.R., Wood, D.M. (2012). Assessment of laboratory sample preparation for fibre reinforced sands. Geotextiles and Geomembranes, 34, 69-79. doi: 10.1016/j.geotexmem.2012.03.002.
  9. Tang, C.S., Wang, D.Y., Cui, Y.J., Shi, B., Li, J. (2016). Tensile strength of fiber-reinforced soil. Journal of Materials in Civil Engineering, 28(7), 04016031. doi: 10.1061/(ASCE)MT.1943-5533.0001546.
  10. Consoli, N.C., Vendruscolo, M.A., Fonini, A., Dalla Rosa, F. (2009). Fiber reinforcement effects on sand considering a wide cementation range. Geotextiles and Geomembranes, 27(3), 196-203. doi: 10.1016/j.geotexmem.2008.11.005.
  11. Shukla, S.K. (2017). Engineering behaviour of fibre-reinforced soil. In: Fundamentals of Fibre-Reinforced Soil Engineering. Springer, Singapore, pp. 45-110. doi: 10.1007/978-981-10-3063-5_3.
  12. Saxena, S.K., Lastrico, R.M. (1978). Static properties of lightly cemented sand. Journal of the Geotechnical Engineering Division, 104(12), 1449-1464. doi: 10.1061/AJGEB6.0000728.
  13. Consoli, N.C., Bassani, M.A.A., Festugato, L. (2010). Effect of fiber-re- inforcement on the strength of cemented soils. Geotextiles and Geomembranes, 28(4), 344-351. doi: 10.1016/j.geotexmem.2010.01.005.
  14. Clough, G.W., Sitar, N., Bachus, R.C., Rad, N.S. (1981). Cemented sands under static loading. Journal of the Geotechnical Engineering Division, 107(6), 799-817. doi: 10.1061/AJGEB6.0001152.
  15. Consoli, N.C., Zortéa, F., de Souza, M., Festugato, L. (2011). Studies on the dosage of fiber-reinforced cemented soils. Journal of Materials in Civil Engineering, 23(12), 1624-1632. doi: 10.1061/(ASCE)MT.1943-5533.0000343.
  16. Hamidi, A., Hooresfand, M. (2013). Effect of fiber reinforcement on triaxial shear behavior of cement treated sand. Geotextiles and Geomembranes, 36, 1-9. doi: 10.1016/j.geotexmem.2012.10.005.
  17. Consoli, N.C., Rotta, G.V., Prietto, P.D.M. (2000). Influence of curing under stress on the triaxial response of cemented soils. Géotechnique, 50(1), 99-105. doi: 10.1680/geot.2000.50.1.99.
  18. Festugato, L., Menger, E., Benezra, F., Kipper, E.A., Consoli, N.C. (2017). Fibre-reinforced cemented soils compressive and tensile strength assessment as a function of filament length. Geotextiles and Geomembranes, 45(1), 77-82. doi: 10.1016/j.geotexmem.2016.09.001.
  19. Leroueil, S., Vaughan, P.R. (1990). The general and congruent effects of structure in natural soils and weak rocks. Géotechnique, 40(3), 467-488. doi: 10.1680/geot.1990.40.3.467.
  20. Festugato, L., da Silva, A.P., Diambra, A., Consoli, N.C., Ibraim, E. (2018). Modelling tensile/compressive strength ratio of fibre reinforced cemented soils. Geotextiles and Geomembranes, 46(2), 155-165. doi: 10.1016/j.geotexmem.2017.11.003.
  21. Coop, M.R., Atkinson, J.H. (1994). Discussion: The mechanics of cemented carbonate sands. Géotechnique, 44(3), 533-537. doi: 10.1680/geot.1994.44.3.533.
  22. Schnaid, F., Prietto, P.D.M., Consoli, N.C. (2001). Characterization of cemented sand in triaxial compression. Journal of Geotechnical and Geoenvironmental Engineering, 127(10), 857-868. doi: 10.1061/(ASCE)1090-0241(2001)127:10(857).
  23. Maher, M.H., Ho, Y.C. (1993). Behavior of fiber-reinforced cemented sand under static and cyclic loads. Geotechnical Testing Journal, 16(3), 330-338. doi: 10.1520/GTJ10054J.
  24. Haeri, S.M., Hamidi, A., Tabatabaee, N. (2005). The effect of gypsum cementation on the mechanical behavior of gravely sands. Geotechnical Testing Journal, 28(4), 380-390. doi: 10.1520/GTJ12574.
  25. Consoli, N.C., Cruz, R.C., da Fonseca, A.V., Coop, M.R. (2012). Influence of cement-voids ratio on stress-dilatancy behavior of artificially cemented sand. Journal of Geotechnical and Geoenvironmental Engineering, 138(1), 100-109. doi: 10.1061/(ASCE)GT.1943-5606.0000565.
  26. Namikawa, T., Koseki, J. (2006). Experimental determination of softening relations for cement-treated sand. Soils and Foundations, 46(4), 491-504. doi: 10.3208/sandf.46.491.
  27. Consoli, N.C., De Moraes, R.R., Festugato, L. (2011). Split tensile strength of monofilament polypropylene fiber-reinforced cemented sandy soils. Geosynthetics International, 18(2), 57-62. doi: 10.1680/gein.2011.18.2.57.
  28. Namikawa, T., Koseki, J. (2007). Evaluation of tensile strength of cement-treated sand based on several types of laboratory tests. Soils and Foundations, 47(4), 657-674. doi: 10.3208/sandf.47.657.
  29. Sarfarazi, V., Ghazvinian, A., Schubert, W., Nejati, H.R., Hadei, R. (2016). A new approach for measurement of tensile strength of concrete. Periodica Polytechnica Civil Engineering, 60(2), 199-203. doi: 10.3311/PPci.8328.
  30. Namikawa, T., Hiyama, S., Ando, Y., Shibata, T. (2017). Failure behavior of cement-treated soil under triaxial tension conditions. Soils and Foundations, 57(5), 815-827. doi: 10.1016/j.sandf.2017.08.011.
  31. Georgees, R.N., Hassan, R.A., Evans, R.P., Jegatheesan, P. (2018). An evaluation of performance-related properties for granular pavement materials using a polyacrylamide additive. International Journal of Pavement Engineering, 19(2), 153-163. doi: 10.1080/10298436.2016.1172710.
  32. Gray, D.H., Ohashi, H. (1983). Mechanics of fiber reinforcement in sand. Journal of Geotechnical Engineering, 109(3), 335-353. doi: 10.1061/(ASCE)0733-9410(1983)109:3(335).
  33. Consoli, N.C., Dal Casagrande, M., Coop, M.R. (2005). Effect of fiber reinforcement on the isotropic compression behavior of a sand. Journal of Geotechnical and Geoenvironmental Engineering, 131(11), 1434-1436. doi: 10.1061/(ASCE)1090-0241(2005)131:11(1434).
  34. ASTM ASTM D2487-17. (2011). Standard practice for Classification of Soils for Engineering Purposes (Unified soil Classification System). American Society for Testing and Materials, West Conshohocken, PA, USA. doi: 10.1520/D2487-11.
  35. Ladd, R.S. (1978). Preparing test specimens using undercompaction. Geotechnical Testing Journal, 1(1), 16-23. doi: 10.1520/GTJ10364J.
  36. Koseki, J., Sato, T., Mihira, S., Takeya, N., Yoshizawa, M. (2005). Comparison of tensile strength of cement treated sand by various test methods. In: International Conference on Deep Mixing Best Practice and Recent Advances, Stockholm, Sweden, pp. 95-100. https://www.sgi.se/globalassets/publika- tioner/svensk-djupstabilisering/sd-r13-v1-1.pdf.
  37. Ampadu, S.K., Tatsuoka, F. (1993). Effect of setting method on the behaviour of clays in triaxial compression from saturation to undrained shear. Soils and Foundations, 33(2), 14-34. doi: 10.3208/sandf1972.33.2_14.
  38. Skempton, A.W. (1960). The pore-pressure coefficient in saturated soils. Géotechnique, 10(4), 186-187. doi: 10.1680/geot.1960.10.4.186.
  39. Consoli, N.C., Montardo, J.P., Donato, M., Prietto, P.D. (2004). Effect of material properties on the behaviour of sand-cement-fibre composites. Proceedings of the Institution of Civil Engineers - Ground Improvement, 8(2), 77-90. doi: 10.1680/grim.2004.8.2.77.
  40. Stacho, J., Sulovska, M., Slavik, I. (2020). Determining the shear strength properties of a soil-geogrid interface using a large-scale direct shear test apparatus. Periodica Polytechnica Civil Engineering, 64(4), 989-998. doi: 10.3311/PPci.15766.
  41. Consoli, N.C., Prietto, P.D.M., Ulbrich, L.A. (1998). Influence of fiber and cement addition on behavior of sandy soil. Journal of Geotechnical and Geoenvironmental Engineering, 124(12), 1211-1214. doi: 10.1061/(ASCE)1090-0241(1998)124:12(1211).
DOI: https://doi.org/10.2478/sgem-2025-0018 | Journal eISSN: 2083-831X | Journal ISSN: 0137-6365
Language: English
Page range: 27 - 45
Submitted on: Nov 12, 2024
Accepted on: Apr 28, 2025
Published on: Aug 14, 2025
Published by: Wroclaw University of Science and Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Hysen Ahmeti, Ragip Behrami, published by Wroclaw University of Science and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.