References
- Alén, C.G. (1998). On probability in geotechnics. Random calculation models exemplified on slope stability analysis and ground-superstructure interaction. PhD thesis, Chalmers University of Technology, Göteborg.
- Alén, C.G., Sällfors, G.B. (1999). Uncertainties in modeling of soil properties. In: Barends et al. (eds), Proc. of the 12th European Conference on Soil Mechanics and Geotechnical Engineering, Geotechnical Engineering for Transportation Infrastructure, Balkema, Rotterdam, vol. 1, 303–308.
- Batog, A., Hawrysz, M. (2010). Wartości charakterystyczne parametrów geotechnicznych gruntów wyznaczane według Eurokodu 7 (Characteristic values of geotechnical parameters of soil determined according to Eurocode 7). Górnictwo i Geoinżynieria, 34(2), 77–85 (in Polish).
- Bond, A., Harris, A. (2008). Decoding Eurocode 7. Taylor & Francis.
- Ching, J., Phoon, K-K., Chen, K-F., Orr, T.L.L., Schneider, H.R. (2020). Statistical determination of multivariate characteristic values for Eurocode 7. Structural Safety, 82, 101893.
https://doi.org/10.1016/j.strusafe.2019.101893 - European standard EN 1997-1:2004 Eurocode 7: Geotechnical design – Part 1: General rules. CEN, 2004.
- European standard FprEN 1990:2022-09 Eurocode – Basic of structural and geotechnical design. CEN, 2022.
- European standard prEN 1997-1:2022-09 Eurokode 7: Geotechnical design – Part 1: General rules. CEN, 2022.
- European standard EN ISO 14688-1:2018-05 Geotechnical investigation and testing – identification and classification of soil – Part 1: Identification and description. CEN, 2018.
- Godlewski, T., Koda, E., Mitew-Czajewska, M., Łukasik, S., Rabarijoely, S. (2023). Essential georisk factors in the assessment of the influence of underground structures on neighboring facilities. Archives of Civil Engineering, 69(3), 113–128.
https://doi.org/10.24425/ace.2023.146070 - Jaksa, M.B., Brooker, P.I., Kaggwa, W.S. (1997). Inaccuracies Associated with Estimating Random Measurement Errors. Journal of Geotechnical and Geoenviromental Engineering, 123(5), 393–401.
https://doi.org/10.1061/(ASCE)1090-0241(1997)123:5(393) - Kulhawy, F.H., Mayne, P.W. (1990). Manual on estimating soil properties for foundation design. Final Report No. EL-6800, Electric Power Research Institute.
- Lacasse, S., Nadim, F. (1994). Reliability issues and future challenges in geotechnical engineering for offshore structures. Proc. of 7th International Conference on the Behaviour of Offshore Structures, BOSS'94, Massachusetts, 1994, Vol. 1: Geotechnics, C. Chryssostomidis & al. (eds.), Elsevier, 1–48.
- Lechowicz, Z., Rabarijoely, S., Kutia, T. (2017). Determination of undrained shear strength and constrained modulus from DMT for stiff overconsolidated clays. Annals of Warsaw University of Life Sciences – SGGW, 49(2), 107–116.
https://doi.org/10.1515/sggw-2017-0009 - Lesny, K. (Lead discusser) (2017). Chapter 2: Evaluation and consideration of model uncertainties in reliability based design. Joint TC205/TC304 Working Group on Discussion of statistical/reliability methods of Eurocodes – Final Report. Sep 2017. 19th International Conference on Soil Mechanics and Geotechnical Engineering, Seoul, Korea, 20–64.
- Löfman, M. (2016). Determination of characteristic values of geotechnical parameters. Proc. of 25th European Young Geotechnical Engineers Conference, Sibiu, Romania, 73–82.
- Młynarek, Z., Wierzbicki, J., Lunne, T. (2023). The Use of CPTU and DMT Methods to Determine Soil Deformation Moduli—Perspectives and Limitations. Studia Geotechnica et Mechanica, 2023; 1–29.
https://doi.org/10.2478/sgem-2023-0021 . - Nguyen, T. S., Likitlersuang, S., Ohtsu, H., Kitaoka, T. (2017). Influence of the spatial variability of shear strength parameters on rainfall induced landslides: a case study of sandstone slope in Japan. Arabian Journal of Geosciences, 10(16), 369.
https://doi.org/10.1007/s12517-017-3158-y - Nguyen, T. S., Likitlersuang, S. (2019). Reliability analysis of unsaturated soil slope stability under infiltration considering hydraulic and shear strength parameters. Bulletin of Engineering Geology and the Environment, 78, 5727–5743.
https://doi.org/10.1007/s10064-019-01513-2 . - Nguyen, T. S., Likitlersuang, S. (2021). Influence of the spatial variability of soil shear strength on deep excavation: A case study of a Bangkok underground MRT station. International Journal of Geomechanics, 21(2), 04020248.
https://doi.org/10.1061/(ASCE)GM.1943-5622.0001914 . - Nguyen, T. S., Ngamcharoen, K., Likitlersuang, S. (2023). Statistical characterisation of the geotechnical properties of Bangkok subsoil. Geotechnical and Geological Engineering, 41(3), 2043–2063.
https://doi.org/10.1007/s10706-023-02390-z - Olek, B., Woźniak, H., Stanisz, J. (2014). Metody statystyczne stosowane do wyznaczania parametrów geotechnicznych (Statistical methods used to determine geotechnical parameters). Przegląd Geologiczny, 62(10/2), 657–663 (in Polish).
- Pohl, C. (2011). Determination of characteristic soil values by statistical methods. In: Vogt, N., Schuppener, B., Straub, D., Bräu, G.: Geotechnical Safety and Risk. ISGSR 2011, Karlsruhe: Bundesanstalt für Wasserbau, 427–434, ISBN 978-3-939230-01-4.
https://hdl.handle.net/20.500.11970/99593 - Polish Standard PN-B-03020:1981 Grunty budowlane – Posadowienie bezpośrednie Budowli – Obliczenia statyczne i projektowanie (Building soils – Foundation bases – Static calculation and design). Polski Komitet Normalizacyjny (in Polish).
- Poulos, H.G., Davis, E. H. (1974). Elastic solutions for soil and rock mechanics. John Wiley & Sons, INC. New York.
- Puła, W. (2014). Wybrane zagadnienia dotyczące wyznaczania wartości charakterystycznych w geotechnice. (Selected issues regarding the determination of characteristic values in geotechnics). Acta Scientiarum Polonorum, Architectura, 13(1), 21–36 (in Polish).
- Puła, W., Zaskórski, Ł. (2015). Estimation of the probability distribution of the random bearing capacity of cohesionless soil using the random finite element method. Structure and Infrastructure Engineering, 11(5), 707–720.
https://doi.org/10.1080/15732479.2014.903501 - Rabarijoely, S., Jabłonowski, S., Garbulewski, K. (2013). Dobór parametrów w projektowaniu geotechnicznym z wykorzystaniem teorii Bayesa (Evaluation of parameters in geotechnical design using Bayes' theory). Budownictwo i Inżynieria Środowiska, 4, 211–218 (in Polish).
- Rabarijoely, S. (2019a). A Bayesian Approach in the Evaluation of Unit Weight of Mineral and Organic Soils Based on Dilatometer Tests (DMT). Applied Sciences, 9(18), 3779.
https://doi.org/10.3390/app9183779 - Rabarijoely, S. (2019b). A new method for the estimation of hydraulic permeability, coefficient of consolidation, and soil fraction based on the dilatometer tests (DMT). Studia Geotechnica et Mechanica, 41(4), 212–22
- Rabarijoely, S., Lech, M., & Bajda, M. (2021). Determination of relative density and degree of saturation in mineral soils based on in situ tests. Materials, 14(22), 6963.
- Schneider, H.R. (1997). Definition and determination of characteristic soil properties. Panel discussion of 14th International Conference on Soil Mechanics and Foundation Engineering, Hamburg Germany 1997.
https://www.issmge.org/publications/online-library - Schneider, H.R. (1999). Determination of characteristic soil properties. Geotechnical Engineering for Transportation Infrastructure, Barends et al. Balkema, Rotterdam, 1999.
- Schneider, H.R., Fitze, P. (2013). Characteristic shear strength values for EC7: Guidelines based on a statistical framework. Proc. of the 15th European Conference on Soil Mechanics and Geotechnical Engineering, Athens, Greece, IOS Press., 318–324.
https://doi.org/10.3233/978-1-61499-199-1-318 - Senneset, K., Sandven, R., Svano, G. (1989). Strength and deformation parameters from cone penetration tests. Transportation Research Record. No. 1235, 24–37.
- Simpson, B., Morrison, P., Yasuda, S., Townsend, B., Gazetas, G. (2009). State of the art report. Analysis and design. Proc. 17th International Conference on Soil Mechanics and Geotechnical Engineering, Alexandria, Egypt, Vol. 4, 2873–2929.
https://www.issmge.org/uploads/publications/1/21/STAL9781607500315-2873.pdf - Straż, G., Borowiec, A. (2021). Evaluation of the unit weight of organic soils from a CPTM using an Artificial Neural Networks. Archives of Civil Engineering, LXVII(3), 259–281.
https://doi.org/10.25525/ace.2021.138055 - Sulewska, M.J., Lechowicz, Z. (2024). Determination of the characteristic values of the undrained shear strength of organic soils according to Eurocode 7. Archives of Civil Engineering, LXX(1), 39–52.
https://doi.org/10.24425/ace.2024.148899 - Wysokiński, L., Kotlicki, W., Godlewski, T. (2011). Projektowanie geotechniczne według Eurokodu 7 (Geotechnical design according to Eurocode 7). Poradnik. Instytut Techniki Budowlanej, Warszawa, 2011 (in Polish).
- Yoon, G.L., Yoon, Y.W., Kim, H.Y. (2010). Determination of geotechnical characteristic values of marine clay. Georisk. 4(1), 51–61.
https://doi.org/10.1080/17499510902896612 - Zhang, Y., Shen, M., Juang, C.H., Tan, X. (2020). Fractile-based method selecting characteristic values for geotechnical design with LRFD. Soils and Foudations, 60, 115–128.
https://doi.org/10.1016/j.sandf.2020.01.01