Have a personal or library account? Click to login
Assessment of spread foundation settlement using statistical determination of characteristic values of subsoil properties Cover

Assessment of spread foundation settlement using statistical determination of characteristic values of subsoil properties

Open Access
|May 2025

References

  1. Alén, C.G. (1998). On probability in geotechnics. Random calculation models exemplified on slope stability analysis and ground-superstructure interaction. PhD thesis, Chalmers University of Technology, Göteborg.
  2. Alén, C.G., Sällfors, G.B. (1999). Uncertainties in modeling of soil properties. In: Barends et al. (eds), Proc. of the 12th European Conference on Soil Mechanics and Geotechnical Engineering, Geotechnical Engineering for Transportation Infrastructure, Balkema, Rotterdam, vol. 1, 303–308.
  3. Batog, A., Hawrysz, M. (2010). Wartości charakterystyczne parametrów geotechnicznych gruntów wyznaczane według Eurokodu 7 (Characteristic values of geotechnical parameters of soil determined according to Eurocode 7). Górnictwo i Geoinżynieria, 34(2), 77–85 (in Polish).
  4. Bond, A., Harris, A. (2008). Decoding Eurocode 7. Taylor & Francis.
  5. Ching, J., Phoon, K-K., Chen, K-F., Orr, T.L.L., Schneider, H.R. (2020). Statistical determination of multivariate characteristic values for Eurocode 7. Structural Safety, 82, 101893. https://doi.org/10.1016/j.strusafe.2019.101893
  6. European standard EN 1997-1:2004 Eurocode 7: Geotechnical design – Part 1: General rules. CEN, 2004.
  7. European standard FprEN 1990:2022-09 Eurocode – Basic of structural and geotechnical design. CEN, 2022.
  8. European standard prEN 1997-1:2022-09 Eurokode 7: Geotechnical design – Part 1: General rules. CEN, 2022.
  9. European standard EN ISO 14688-1:2018-05 Geotechnical investigation and testing – identification and classification of soil – Part 1: Identification and description. CEN, 2018.
  10. Godlewski, T., Koda, E., Mitew-Czajewska, M., Łukasik, S., Rabarijoely, S. (2023). Essential georisk factors in the assessment of the influence of underground structures on neighboring facilities. Archives of Civil Engineering, 69(3), 113–128. https://doi.org/10.24425/ace.2023.146070
  11. Jaksa, M.B., Brooker, P.I., Kaggwa, W.S. (1997). Inaccuracies Associated with Estimating Random Measurement Errors. Journal of Geotechnical and Geoenviromental Engineering, 123(5), 393–401. https://doi.org/10.1061/(ASCE)1090-0241(1997)123:5(393)
  12. Kulhawy, F.H., Mayne, P.W. (1990). Manual on estimating soil properties for foundation design. Final Report No. EL-6800, Electric Power Research Institute.
  13. Lacasse, S., Nadim, F. (1994). Reliability issues and future challenges in geotechnical engineering for offshore structures. Proc. of 7th International Conference on the Behaviour of Offshore Structures, BOSS'94, Massachusetts, 1994, Vol. 1: Geotechnics, C. Chryssostomidis & al. (eds.), Elsevier, 1–48.
  14. Lechowicz, Z., Rabarijoely, S., Kutia, T. (2017). Determination of undrained shear strength and constrained modulus from DMT for stiff overconsolidated clays. Annals of Warsaw University of Life Sciences – SGGW, 49(2), 107–116. https://doi.org/10.1515/sggw-2017-0009
  15. Lesny, K. (Lead discusser) (2017). Chapter 2: Evaluation and consideration of model uncertainties in reliability based design. Joint TC205/TC304 Working Group on Discussion of statistical/reliability methods of Eurocodes – Final Report. Sep 2017. 19th International Conference on Soil Mechanics and Geotechnical Engineering, Seoul, Korea, 20–64.
  16. Löfman, M. (2016). Determination of characteristic values of geotechnical parameters. Proc. of 25th European Young Geotechnical Engineers Conference, Sibiu, Romania, 73–82.
  17. Młynarek, Z., Wierzbicki, J., Lunne, T. (2023). The Use of CPTU and DMT Methods to Determine Soil Deformation Moduli—Perspectives and Limitations. Studia Geotechnica et Mechanica, 2023; 1–29. https://doi.org/10.2478/sgem-2023-0021.
  18. Nguyen, T. S., Likitlersuang, S., Ohtsu, H., Kitaoka, T. (2017). Influence of the spatial variability of shear strength parameters on rainfall induced landslides: a case study of sandstone slope in Japan. Arabian Journal of Geosciences, 10(16), 369. https://doi.org/10.1007/s12517-017-3158-y
  19. Nguyen, T. S., Likitlersuang, S. (2019). Reliability analysis of unsaturated soil slope stability under infiltration considering hydraulic and shear strength parameters. Bulletin of Engineering Geology and the Environment, 78, 5727–5743. https://doi.org/10.1007/s10064-019-01513-2.
  20. Nguyen, T. S., Likitlersuang, S. (2021). Influence of the spatial variability of soil shear strength on deep excavation: A case study of a Bangkok underground MRT station. International Journal of Geomechanics, 21(2), 04020248. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001914.
  21. Nguyen, T. S., Ngamcharoen, K., Likitlersuang, S. (2023). Statistical characterisation of the geotechnical properties of Bangkok subsoil. Geotechnical and Geological Engineering, 41(3), 2043–2063. https://doi.org/10.1007/s10706-023-02390-z
  22. Olek, B., Woźniak, H., Stanisz, J. (2014). Metody statystyczne stosowane do wyznaczania parametrów geotechnicznych (Statistical methods used to determine geotechnical parameters). Przegląd Geologiczny, 62(10/2), 657–663 (in Polish).
  23. Pohl, C. (2011). Determination of characteristic soil values by statistical methods. In: Vogt, N., Schuppener, B., Straub, D., Bräu, G.: Geotechnical Safety and Risk. ISGSR 2011, Karlsruhe: Bundesanstalt für Wasserbau, 427–434, ISBN 978-3-939230-01-4. https://hdl.handle.net/20.500.11970/99593
  24. Polish Standard PN-B-03020:1981 Grunty budowlane – Posadowienie bezpośrednie Budowli – Obliczenia statyczne i projektowanie (Building soils – Foundation bases – Static calculation and design). Polski Komitet Normalizacyjny (in Polish).
  25. Poulos, H.G., Davis, E. H. (1974). Elastic solutions for soil and rock mechanics. John Wiley & Sons, INC. New York.
  26. Puła, W. (2014). Wybrane zagadnienia dotyczące wyznaczania wartości charakterystycznych w geotechnice. (Selected issues regarding the determination of characteristic values in geotechnics). Acta Scientiarum Polonorum, Architectura, 13(1), 21–36 (in Polish).
  27. Puła, W., Zaskórski, Ł. (2015). Estimation of the probability distribution of the random bearing capacity of cohesionless soil using the random finite element method. Structure and Infrastructure Engineering, 11(5), 707–720. https://doi.org/10.1080/15732479.2014.903501
  28. Rabarijoely, S., Jabłonowski, S., Garbulewski, K. (2013). Dobór parametrów w projektowaniu geotechnicznym z wykorzystaniem teorii Bayesa (Evaluation of parameters in geotechnical design using Bayes' theory). Budownictwo i Inżynieria Środowiska, 4, 211–218 (in Polish).
  29. Rabarijoely, S. (2019a). A Bayesian Approach in the Evaluation of Unit Weight of Mineral and Organic Soils Based on Dilatometer Tests (DMT). Applied Sciences, 9(18), 3779. https://doi.org/10.3390/app9183779
  30. Rabarijoely, S. (2019b). A new method for the estimation of hydraulic permeability, coefficient of consolidation, and soil fraction based on the dilatometer tests (DMT). Studia Geotechnica et Mechanica, 41(4), 212–22
  31. Rabarijoely, S., Lech, M., & Bajda, M. (2021). Determination of relative density and degree of saturation in mineral soils based on in situ tests. Materials, 14(22), 6963.
  32. Schneider, H.R. (1997). Definition and determination of characteristic soil properties. Panel discussion of 14th International Conference on Soil Mechanics and Foundation Engineering, Hamburg Germany 1997. https://www.issmge.org/publications/online-library
  33. Schneider, H.R. (1999). Determination of characteristic soil properties. Geotechnical Engineering for Transportation Infrastructure, Barends et al. Balkema, Rotterdam, 1999.
  34. Schneider, H.R., Fitze, P. (2013). Characteristic shear strength values for EC7: Guidelines based on a statistical framework. Proc. of the 15th European Conference on Soil Mechanics and Geotechnical Engineering, Athens, Greece, IOS Press., 318–324. https://doi.org/10.3233/978-1-61499-199-1-318
  35. Senneset, K., Sandven, R., Svano, G. (1989). Strength and deformation parameters from cone penetration tests. Transportation Research Record. No. 1235, 24–37.
  36. Simpson, B., Morrison, P., Yasuda, S., Townsend, B., Gazetas, G. (2009). State of the art report. Analysis and design. Proc. 17th International Conference on Soil Mechanics and Geotechnical Engineering, Alexandria, Egypt, Vol. 4, 2873–2929. https://www.issmge.org/uploads/publications/1/21/STAL9781607500315-2873.pdf
  37. Straż, G., Borowiec, A. (2021). Evaluation of the unit weight of organic soils from a CPTM using an Artificial Neural Networks. Archives of Civil Engineering, LXVII(3), 259–281. https://doi.org/10.25525/ace.2021.138055
  38. Sulewska, M.J., Lechowicz, Z. (2024). Determination of the characteristic values of the undrained shear strength of organic soils according to Eurocode 7. Archives of Civil Engineering, LXX(1), 39–52. https://doi.org/10.24425/ace.2024.148899
  39. Wysokiński, L., Kotlicki, W., Godlewski, T. (2011). Projektowanie geotechniczne według Eurokodu 7 (Geotechnical design according to Eurocode 7). Poradnik. Instytut Techniki Budowlanej, Warszawa, 2011 (in Polish).
  40. Yoon, G.L., Yoon, Y.W., Kim, H.Y. (2010). Determination of geotechnical characteristic values of marine clay. Georisk. 4(1), 51–61. https://doi.org/10.1080/17499510902896612
  41. Zhang, Y., Shen, M., Juang, C.H., Tan, X. (2020). Fractile-based method selecting characteristic values for geotechnical design with LRFD. Soils and Foudations, 60, 115–128. https://doi.org/10.1016/j.sandf.2020.01.01
DOI: https://doi.org/10.2478/sgem-2025-0010 | Journal eISSN: 2083-831X | Journal ISSN: 0137-6365
Language: English
Page range: 179 - 192
Submitted on: Jun 26, 2024
Accepted on: Dec 13, 2024
Published on: May 12, 2025
Published by: Wroclaw University of Science and Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Simon Rabarijoely, Zbigniew Lechowicz, Maria Jolanta Sulewska, published by Wroclaw University of Science and Technology
This work is licensed under the Creative Commons Attribution 4.0 License.