References
- S. Marathe, A.U.R.U.R.R. Shankar, Investigations on Bio-enzyme Stabilized Pavement Subgrades of Lateritic, Lithomargic and Blended Soils, Int. J. Pavement Res. Technol. 16 (2023) 15–25.
https://doi.org/10.1007/s42947-021-00107-0 . - A.U.R. Shankar, A. Chandrashekhar, P. Bhat, H, Experimental Investigation on Lithomargic Clay Stabilized with Sand and Coir, Indian Highw. 40 (2012) 21–31.
https://trid.trb.org/view/1132871 . - S.B. Malegole, P. Pranab, Sustainable use of recycled concrete aggregates and waste rubber shreds in drainage layer of landfills, in: Japanese Geotech. Soc. Spec. Publ., Mangalore, 2021: pp. 221–225.
https://doi.org/10.3208/jgssp.v09.cpeg066 . - V. Vunnam, M. Sahil Ali, A. Singh, J. Asundi, Construction and Demolition Waste Utilisation for Recycled Products in Bengaluru: Challenges and Prospects, Solut. Exch. Urban Transform. India. (2016) 54.
https://smartnet.niua.org/content/8dc4e2a3-9ddc-42e8-82fd-c9f1787a8dba . - S.J. Ramezani, M.M. Toufigh, V. Toufigh, Utilization of Glass Powder and Silica Fume in Sugarcane Bagasse Ash-Based Geopolymer for Soil Stabilization, J. Mater. Civ. Eng. 35 (2023) 1–20.
https://doi.org/10.1061/(asce)mt.1943-5533.0004704 . - C. Teerawattanasuk, P. Voottipruex, Comparison between cement and fly ash geopolymer for stabilized marginal lateritic soil as road material, Int. J. Pavement Eng. 20 (2019) 1264–1274.
https://doi.org/10.1080/10298436.2017.1402593 . - D.C.D.C. Sekhar, S. Nayak, H.K.K. Preetham, Influence of Granulated Blast Furnace Slag and Cement on the Strength Properties of Lithomargic Clay, Indian Geotech. J. 47 (2017) 384–392.
https://doi.org/10.1007/s40098-017-0228-8 . - S. Marathe, B. Shankar Rao, A. Kumar, Stabilization of Lithomargic Soil Using Cement and Randomly Distributed Waste Shredded Rubber Tyre Chips, Int. J. Eng. Trends Technol. 23 (2015) 284–288.
https://doi.org/10.14445/22315381/ijett-v23p253 . - D.C. Sekhar, Studies on Lithomargic Clay Stabilized uing Granulated Blast Furnace Slag and Cement, National Institute of Technology Karnataka, Surathkal, India, 2017.
- P.A. Naik, S. Marathe, S. Akhila, B.G.M. Mayuri, Properties of WFS Incorporated Cement Stabilized Lateritic Soil Subgrades for Rural Pavement Applications, Int. J. Geosynth. Gr. Eng. 9 (2023) 1–17.
https://doi.org/10.1007/s40891-023-00460-z . - A. Patel, Soil Stabilization, in: Geotech. Investig. Improv. Gr. Cond., Woodhead Publishing Series in Civil and Structural Engineering, 2019: pp. 19–27.
https://doi.org/10.1016/B978-0-12-817048-9.00003-2 . - A. Anburuvel, N. Sathiparan, G.M.A. Dhananjaya, A. Anuruththan, Characteristic evaluation of geopolymer based lateritic soil stabilization enriched with eggshell ash and rice husk ash for road construction: An experimental investigation, Constr. Build. Mater. 387 (2023) 131659.
https://doi.org/10.1016/j.conbuildmat.2023.131659 . - A. Shivaramaiah, A.U. Ravi Shankar, A. Singh, K.H. Pammar, Utilization of lateritic soil stabilized with alkali solution and ground granulated blast furnace slag as a base course in flexible pavement construction, Int. J. Pavement Res. Technol. 13 (2020) 478–488.
https://doi.org/10.1007/s42947-020-0251-5 . - S. Amulya, A.U.U. Ravi Shankar, M. Praveen, Stabilisation of lithomargic clay using alkali activated fly ash and ground granulated blast furnace slag, Int. J. Pavement Eng. 21 (2020) 1114–1121.
https://doi.org/10.1080/10298436.2018.1521520 . - S. Marathe, A.K.A.K. Bhat, N.M.M. Ashmitha, P.K.K. Akarsh, Stabilized Lithomargic Soil Subgrades for Low Volume Road Design Using Industrial Wastes, Int. J. Pavement Res. Technol. (2023) 1–12.
https://doi.org/10.1007/s42947-023-00317-8 . - IRC:SP:62, Guidelines for Design and Construction of Cement Concrete Pavements for Low Volume Roads, (2014) 1–35.
- IRC:SP-72, Guidelines for the design of flexible pavements for Low Volume Rural Roads (First Revision), (2015) 1–51.
- N.A. Saputra, R. Putra, The Correlation between CBR (California Bearing Ratio) and UCS (Unconfined Compression Strength) Laterite Soils in Palangka Raya as Heap Material, IOP Conf. Ser. Earth Environ. Sci. 469 (2020) 1–7.
https://doi.org/10.1088/1755-1315/469/1/012093 . - J. Davidovits, Geopolymers - Inorganic polymeric new materials, J. Therm. Anal. 37 (1991) 1633–1656.
https://doi.org/10.1007/BF01912193 . - P. Duxson, A. Fernández-Jiménez, J.L.L. Provis, G.C.C. Lukey, A. Palomo, J.S.J.S.J. Van Deventer, Geopolymer technology: The current state of the art, J. Mater. Sci. 42 (2007) 2917–2933.
https://doi.org/10.1007/s10853-006-0637-z . - J.L. Provis, J.S.J. Van Deventer, Alkali Activated Materials, State-of-the-Art Report, RILEM TC 224-AAM, Alkali Act. Mater. (2014).
- Y.-M. Liew, C.-Y. Heah, A.B. Mohd Mustafa, H. Kamarudin, Structure and properties of clay-based geopolymer cements: A review, Prog. Mater. Sci. 83 (2016) 595–629.
https://doi.org/https://doi.org/10.1016/j.pmatsci.2016.08.002 . - M. Almakhadmeh, A.M. Soliman, Effects of mixing water temperatures on properties of one-part alkali-activated slag paste, Constr. Build. Mater. 266 (2021) 1–13.
https://doi.org/https://doi.org/10.1016/j.conbuildmat.2020.121030 . - Y.N. Sheen, D.H. Le, Innovative Use of Sugarcane Bagasse Ash in Green Alkali-Activated Slag Material: Effects of Activator Concentration on the Blended Pastes, Sugar Tech. 24 (2022) 1037–1051.
https://doi.org/10.1007/s12355-022-01141-3 . - J.S. Yadav, S.K. Tiwari, A study on the potential utilization of crumb rubber in cement treated soft clay, J. Build. Eng. 9 (2017) 177–191.
https://doi.org/10.1016/j.jobe.2017.01.001 . - T. Phoo-Ngernkham, A. Maegawa, N. Mishima, S. Hatanaka, P. Chindaprasirt, Effects of sodium hydroxide and sodium silicate solutions on compressive and shear bond strengths of FA-GBFS geopolymer, Constr. Build. Mater. 91 (2015) 1–8.
https://doi.org/10.1016/j.conbuildmat.2015.05.001 . - Y. Yi, C. Li, S. Liu, Alkali-Activated Ground-Granulated Blast Furnace Slag for Stabilization of Marine Soft Clay, J. Mater. Civ. Eng. 27 (2015) 1–7.
https://doi.org/10.1061/(asce)mt.1943-5533.0001100 . - R. Firdous, D. Stephan, Effect of silica modulus on the geopolymerization activity of natural pozzolans, Constr. Build. Mater. 219 (2019) 31–43.
https://doi.org/10.1016/j.conbuildmat.2019.05.161 . - H.-J. Ho, A. Iizuka, E. Shibata, Chemical recycling and use of various types of concrete waste: A review, J. Clean. Prod. 284 (2021) 124785.
https://doi.org/https://doi.org/10.1016/j.jclepro.2020.124785 . - S.R. Kaniraj, V. Gayathri, Factors influencing the strength of cement fly ash base courses, J. Transp. Eng. 129 (2003) 538–548.
https://doi.org/10.1061/(ASCE)0733-947X(2003)129:5(538) . - A.U.R. Shankar, S. Amulya, Use of Stabilized Lateritic and Black Cotton Soils as a Base Course Replacing Conventional Granular Layer in Flexible Pavement, Int. J. Geosynth. Gr. Eng. 6 (2020) 1–12.
https://doi.org/10.1007/s40891-020-0184-8 .