Have a personal or library account? Click to login

Properties of Slag-Based Geopolymer-Stabilized Indian Lithomargic Soil Using Sugarcane Bagasse Ash for Sustainable Pavement Design

Open Access
|Feb 2025

References

  1. S. Marathe, A.U.R.U.R.R. Shankar, Investigations on Bio-enzyme Stabilized Pavement Subgrades of Lateritic, Lithomargic and Blended Soils, Int. J. Pavement Res. Technol. 16 (2023) 15–25. https://doi.org/10.1007/s42947-021-00107-0.
  2. A.U.R. Shankar, A. Chandrashekhar, P. Bhat, H, Experimental Investigation on Lithomargic Clay Stabilized with Sand and Coir, Indian Highw. 40 (2012) 21–31. https://trid.trb.org/view/1132871.
  3. S.B. Malegole, P. Pranab, Sustainable use of recycled concrete aggregates and waste rubber shreds in drainage layer of landfills, in: Japanese Geotech. Soc. Spec. Publ., Mangalore, 2021: pp. 221–225. https://doi.org/10.3208/jgssp.v09.cpeg066.
  4. V. Vunnam, M. Sahil Ali, A. Singh, J. Asundi, Construction and Demolition Waste Utilisation for Recycled Products in Bengaluru: Challenges and Prospects, Solut. Exch. Urban Transform. India. (2016) 54. https://smartnet.niua.org/content/8dc4e2a3-9ddc-42e8-82fd-c9f1787a8dba.
  5. S.J. Ramezani, M.M. Toufigh, V. Toufigh, Utilization of Glass Powder and Silica Fume in Sugarcane Bagasse Ash-Based Geopolymer for Soil Stabilization, J. Mater. Civ. Eng. 35 (2023) 1–20. https://doi.org/10.1061/(asce)mt.1943-5533.0004704.
  6. C. Teerawattanasuk, P. Voottipruex, Comparison between cement and fly ash geopolymer for stabilized marginal lateritic soil as road material, Int. J. Pavement Eng. 20 (2019) 1264–1274. https://doi.org/10.1080/10298436.2017.1402593.
  7. D.C.D.C. Sekhar, S. Nayak, H.K.K. Preetham, Influence of Granulated Blast Furnace Slag and Cement on the Strength Properties of Lithomargic Clay, Indian Geotech. J. 47 (2017) 384–392. https://doi.org/10.1007/s40098-017-0228-8.
  8. S. Marathe, B. Shankar Rao, A. Kumar, Stabilization of Lithomargic Soil Using Cement and Randomly Distributed Waste Shredded Rubber Tyre Chips, Int. J. Eng. Trends Technol. 23 (2015) 284–288. https://doi.org/10.14445/22315381/ijett-v23p253.
  9. D.C. Sekhar, Studies on Lithomargic Clay Stabilized uing Granulated Blast Furnace Slag and Cement, National Institute of Technology Karnataka, Surathkal, India, 2017.
  10. P.A. Naik, S. Marathe, S. Akhila, B.G.M. Mayuri, Properties of WFS Incorporated Cement Stabilized Lateritic Soil Subgrades for Rural Pavement Applications, Int. J. Geosynth. Gr. Eng. 9 (2023) 1–17. https://doi.org/10.1007/s40891-023-00460-z.
  11. A. Patel, Soil Stabilization, in: Geotech. Investig. Improv. Gr. Cond., Woodhead Publishing Series in Civil and Structural Engineering, 2019: pp. 19–27. https://doi.org/10.1016/B978-0-12-817048-9.00003-2.
  12. A. Anburuvel, N. Sathiparan, G.M.A. Dhananjaya, A. Anuruththan, Characteristic evaluation of geopolymer based lateritic soil stabilization enriched with eggshell ash and rice husk ash for road construction: An experimental investigation, Constr. Build. Mater. 387 (2023) 131659. https://doi.org/10.1016/j.conbuildmat.2023.131659.
  13. A. Shivaramaiah, A.U. Ravi Shankar, A. Singh, K.H. Pammar, Utilization of lateritic soil stabilized with alkali solution and ground granulated blast furnace slag as a base course in flexible pavement construction, Int. J. Pavement Res. Technol. 13 (2020) 478–488. https://doi.org/10.1007/s42947-020-0251-5.
  14. S. Amulya, A.U.U. Ravi Shankar, M. Praveen, Stabilisation of lithomargic clay using alkali activated fly ash and ground granulated blast furnace slag, Int. J. Pavement Eng. 21 (2020) 1114–1121. https://doi.org/10.1080/10298436.2018.1521520.
  15. S. Marathe, A.K.A.K. Bhat, N.M.M. Ashmitha, P.K.K. Akarsh, Stabilized Lithomargic Soil Subgrades for Low Volume Road Design Using Industrial Wastes, Int. J. Pavement Res. Technol. (2023) 1–12. https://doi.org/10.1007/s42947-023-00317-8.
  16. IRC:SP:62, Guidelines for Design and Construction of Cement Concrete Pavements for Low Volume Roads, (2014) 1–35.
  17. IRC:SP-72, Guidelines for the design of flexible pavements for Low Volume Rural Roads (First Revision), (2015) 1–51.
  18. N.A. Saputra, R. Putra, The Correlation between CBR (California Bearing Ratio) and UCS (Unconfined Compression Strength) Laterite Soils in Palangka Raya as Heap Material, IOP Conf. Ser. Earth Environ. Sci. 469 (2020) 1–7. https://doi.org/10.1088/1755-1315/469/1/012093.
  19. J. Davidovits, Geopolymers - Inorganic polymeric new materials, J. Therm. Anal. 37 (1991) 1633–1656. https://doi.org/10.1007/BF01912193.
  20. P. Duxson, A. Fernández-Jiménez, J.L.L. Provis, G.C.C. Lukey, A. Palomo, J.S.J.S.J. Van Deventer, Geopolymer technology: The current state of the art, J. Mater. Sci. 42 (2007) 2917–2933. https://doi.org/10.1007/s10853-006-0637-z.
  21. J.L. Provis, J.S.J. Van Deventer, Alkali Activated Materials, State-of-the-Art Report, RILEM TC 224-AAM, Alkali Act. Mater. (2014).
  22. Y.-M. Liew, C.-Y. Heah, A.B. Mohd Mustafa, H. Kamarudin, Structure and properties of clay-based geopolymer cements: A review, Prog. Mater. Sci. 83 (2016) 595–629. https://doi.org/https://doi.org/10.1016/j.pmatsci.2016.08.002.
  23. M. Almakhadmeh, A.M. Soliman, Effects of mixing water temperatures on properties of one-part alkali-activated slag paste, Constr. Build. Mater. 266 (2021) 1–13. https://doi.org/https://doi.org/10.1016/j.conbuildmat.2020.121030.
  24. Y.N. Sheen, D.H. Le, Innovative Use of Sugarcane Bagasse Ash in Green Alkali-Activated Slag Material: Effects of Activator Concentration on the Blended Pastes, Sugar Tech. 24 (2022) 1037–1051. https://doi.org/10.1007/s12355-022-01141-3.
  25. J.S. Yadav, S.K. Tiwari, A study on the potential utilization of crumb rubber in cement treated soft clay, J. Build. Eng. 9 (2017) 177–191. https://doi.org/10.1016/j.jobe.2017.01.001.
  26. T. Phoo-Ngernkham, A. Maegawa, N. Mishima, S. Hatanaka, P. Chindaprasirt, Effects of sodium hydroxide and sodium silicate solutions on compressive and shear bond strengths of FA-GBFS geopolymer, Constr. Build. Mater. 91 (2015) 1–8. https://doi.org/10.1016/j.conbuildmat.2015.05.001.
  27. Y. Yi, C. Li, S. Liu, Alkali-Activated Ground-Granulated Blast Furnace Slag for Stabilization of Marine Soft Clay, J. Mater. Civ. Eng. 27 (2015) 1–7. https://doi.org/10.1061/(asce)mt.1943-5533.0001100.
  28. R. Firdous, D. Stephan, Effect of silica modulus on the geopolymerization activity of natural pozzolans, Constr. Build. Mater. 219 (2019) 31–43. https://doi.org/10.1016/j.conbuildmat.2019.05.161.
  29. H.-J. Ho, A. Iizuka, E. Shibata, Chemical recycling and use of various types of concrete waste: A review, J. Clean. Prod. 284 (2021) 124785. https://doi.org/https://doi.org/10.1016/j.jclepro.2020.124785.
  30. S.R. Kaniraj, V. Gayathri, Factors influencing the strength of cement fly ash base courses, J. Transp. Eng. 129 (2003) 538–548. https://doi.org/10.1061/(ASCE)0733-947X(2003)129:5(538).
  31. A.U.R. Shankar, S. Amulya, Use of Stabilized Lateritic and Black Cotton Soils as a Base Course Replacing Conventional Granular Layer in Flexible Pavement, Int. J. Geosynth. Gr. Eng. 6 (2020) 1–12. https://doi.org/10.1007/s40891-020-0184-8.
DOI: https://doi.org/10.2478/sgem-2025-0003 | Journal eISSN: 2083-831X | Journal ISSN: 0137-6365
Language: English
Page range: 36 - 47
Submitted on: Jun 9, 2019
Accepted on: Aug 7, 2019
Published on: Feb 19, 2025
Published by: Wroclaw University of Science and Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Shriram Marathe, Martyna Nieświec, Arun Kumar Bhat, Srinath Shetty, published by Wroclaw University of Science and Technology
This work is licensed under the Creative Commons Attribution 4.0 License.