Have a personal or library account? Click to login

Efficient and conservative estimation reliability analysis of strip footing on spatially variable c - ϕ soil using random finite element limit analysis

Open Access
|Feb 2025

References

  1. Ali, A., Lyamin, A. V., Huang, J., Li, J. H., Cassidy, M. J., & Sloan, S. W. (2017). Probabilistic stability assessment using adaptive limit analysis and random fields. Acta Geotechnica, 12(4), 937–948. https://doi.org/10.1007/s11440-016-0505-1
  2. Ali, A., Lyamin, A. V., Huang, J., Sloan, S. W., & Cassidy, M. (2016). Effect of Spatial Correlation Length on the Bearing Capacity of an Eccentrically Loaded Strip Footing. In H. W. Huang, J. Li, J. Zhang, & Chen J.B. (Eds.), APSSRA.
  3. Au, S.-K., & Beck, J. L. (2001). Estimation of small failure probabilities in high dimensions by subset simulation. Probabilistic Engineering Mechanics, 16(4), 263–277. https://doi.org/10.1016/S0266-8920(01)00019-4
  4. Chen, X.-J., Fu, Y., & Liu, Y. (2022). Random finite element analysis on uplift bearing capacity and failure mechanisms of square plate anchors in spatially variable clay. Engineering Geology, 304, 106677. https://doi.org/10.1016/j.enggeo.2022.106677
  5. Cheng, P., Guo, J., Yao, K., & Chen, X. (2023). Numerical investigation on pullout capacity of helical piles under combined loading in spatially random clay. Marine Georesources & Geotechnology, 41(10), 1118–1131. https://doi.org/10.1080/1064119X.2022.2120843
  6. Ching, J., Wu, T. J., Stuedlein, A. W., & Bong, T. (2018). Estimating horizontal scale of fluctuation with limited CPT soundings. Geoscience Frontiers, 9(6), 1597–1608. https://doi.org/10.1016/j.gsf.2017.11.008
  7. Chwała, M., Komatsu, G., & Haruyama, J. (2024). Structural stability of lunar lava tubes with consideration of variable cross-section geometry. Icarus, 411. https://doi.org/10.1016/j.icarus.2023.115928
  8. Chwała, M., & Puła, W. (2020). Evaluation of shallow foundation bearing capacity in the case of a two-layered soil and spatial variability in soil strength parameters. PLoS One, 15(4), e0231992.
  9. Cho, S. E., & Park, H. C. (2010). Effect of spatial variability of cross-correlated soil properties on bearing capacity of strip footing. International Journal for Numerical and Analytical Methods in Geomechanics, 34(1), 1–26.
  10. Ciria Suárez, H. (2004). Computation of Upper and Lower Bounds in Limit Analysis using Second-order Cone Programming and Mesh Adaptivity [Master of Science]. Massachusetts Institute of Technology.
  11. Dobrzanski, J., & Kawa, M. (2021). Bearing capacity of eccentrically loaded strip footing on spatially variable cohesive soil. Studia Geotechnica et Mechanica, 43(4), 425–437. https://doi.org/10.2478/sgem-2021-0035
  12. EN-1990, Basis of Structural Design. (2002).
  13. Engwirda, D. (2014). Locally Optimal Delaunay-refinement and Optimisation-based Mesh Generation.
  14. Fenton, G. A., & Griffiths, D. V. (2008). Risk assessment in geotechnical engineering. John Wiley & Sons.
  15. Griffiths, D. V., & Fenton, G. A. (1993). Seepage beneath water retaining structures founded on spatially random soil. Géotechnique, 43(4), 577–587. https://doi.org/10.1680/geot.1993.43.4.577
  16. Griffiths, D. V., & Fenton, G. A. (2004). Probabilistic Slope Stability Analysis by Finite Elements. Journal of Geotechnical and Geoenvironmental Engineering, 130(5), 507–518. https://doi.org/10.1061/(ASCE)1090-0241(2004)130:5(507)
  17. Griffiths, D. V., Huang, J., & Fenton, G. A. (2009). Influence of Spatial Variability on Slope Reliability Using 2-D Random Fields. Journal of Geotechnical and Geoenvironmental Engineering, 135(10), 1367–1378. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000099
  18. Hicks, M. A., & Samy, K. (2002). Influence of heterogeneity on undrained clay slope stability. Quarterly Journal of Engineering Geology and Hydrogeology, 35(1), 41–49. https://doi.org/10.1144/qjegh.35.1.41
  19. Huang, L., Cheng, Y. M., Li, L., & Yu, S. (2021). Reliability and failure mechanism of a slope with non-stationarity and rotated transverse anisotropy in undrained soil strength. Computers and Geotechnics, 132. https://doi.org/10.1016/j.compgeo.2020.103970
  20. ISO 2394:2015, General principles on reliability for structures. (2015).
  21. J. L. Doob. (1990). Stochastic processes. Wiley-Interscience.
  22. Jerez D. J. & Chwała M. & Jensen H. A. & Beer M. (2024). Optimal borehole placement for the design of rectangular shallow foundation systems under undrained soil conditions: A stochastic framework. Reliability Engineering & System Safety. doi.org/10.1016/j.ress.2023.109771.
  23. Jha, S. K., & Ching, J. (2013). Simulating Spatial Averages of Stationary Random Field Using the Fourier Series Method. Journal of Engineering Mechanics, 139(5), 594–605. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000517
  24. Kawa, M. (2023). Zastosowania pól losowych do opisu anizotropowych ośrodków gruntowych w wybranych zagadnieniach geoinżynierii. Oficyna Wydawnicza Politechniki Wrocławskiej (in Polish).
  25. Kawa, M., Baginska, I., & Wyjadlowski, M. (2019). Reliability analysis of sheet pile wall in spatially variable soil including CPTu test results. Archives of civil and mechanical engineering, 19, 598–613.
  26. Kawa, M., & Puła, W. (2020). 3D bearing capacity probabilistic analyses of footings on spatially variable c–φ soil. Acta Geotechnica, 15(6), 1453–1466. https://doi.org/10.1007/s11440-019-00853-3
  27. Kawa, M., Puła, W., & Truty, A. (2021). Probabilistic analysis of the diaphragm wall using the hardening soil-small (HSs) model. Engineering Structures, 232. https://doi.org/10.1016/j.engstruct.2021.111869
  28. Krabbenhoft, K., Lyamin, A. V., Hjiaj, M., & Sloan, S. W. (2005). A new discontinuous upper bound limit analysis formulation. International Journal for Numerical Methods in Engineering, 63(7), 1069–1088. https://doi.org/10.1002/nme.1314
  29. Kumar, V., Burman, A., Portelinha, F. H. M., Kumar, M., Burman, A., Portelinha, F. H. M., & Das, G. (2023). Influence of Variation of Soil Properties in Bearing Capacity and Settlement Analysis of a Strip Footing Using Random Finite Element Method. Civil Engineering Infrastructures Journal. https://doi.org/ DOI:10.22059/CEIJ.2023.360871.1930
  30. Liu, Y., Chen, X., & Hu, M. (2022). Three-dimensional large deformation modeling of landslides in spatially variable and strain-softening soils subjected to seismic loads. Canadian Geotechnical Journal, 60(4), 426–437.
  31. Liu, X., Wang, Y., & Li, D. Q. (2019). Investigation of slope failure mode evolution during large deformation in spatially variable soils by random limit equilibrium and material point methods. Computers and Geotechnics, 111, 301–312. https://doi.org/10.1016/j.compgeo.2019.03.022
  32. Lyamin, A. V., & Sloan, S. W. (2002a). Lower bound limit analysis using non-linear programming. International Journal for Numerical Methods in Engineering, 55(5), 573–611. https://doi.org/10.1002/nme.511
  33. Lyamin, A. V., & Sloan, S. W. (2002b). Upper bound limit analysis using linear finite elements and non-linear programming. International Journal for Numerical and Analytical Methods in Geomechanics, 26(2), 181–216. https://doi.org/10.1002/nag.198
  34. Lyamin, A. V., & Sloan, S. W. (2003). Mesh generation for lower bound limit analysis. Advances in Engineering Software, 34(6), 321–338. https://doi.org/10.1016/S0965-9978(03)00032-2
  35. Makrodimopoulos, A., & Martin, C. M. (2008). Upper bound limit analysis using discontinuous quadratic displacement fields. Communications in Numerical Methods in Engineering, 24(11), 911–927. https://doi.org/10.1002/cnm.998
  36. Pieczyńska-Kozłowska, J. M., Puła, W., Griffiths, D. V., & Fenton, G. A. (2015). Influence of embedment, self-weight and anisotropy on bearing capacity reliability using the random finite element method. Computers and Geotechnics, 67, 229–238. https://doi.org/10.1016/j.compgeo.2015.02.013
  37. Podlich, N. C. (2018). The Development of Efficient Algorithms for Large-Scale Finite Element Limit Analysis [Doctor of Philosophy]. University of Newcastle.
  38. Podlich, N. C., Lyamin, A. V., & Sloan, S. W. (2014). A Comparison of Conic Programming Software for Finite Element Limit Analysis. Applied Mechanics and Materials, 553, 439–444. https://doi.org/10.4028/www.scientific.net/AMM.553.439
  39. Puła, W., Szabowicz, H., & Kawa, M. (2022). Efficient and conservative estimation of failure probability of strip footing on spatially variable soil using random finite element limit analysis. In J. Huang, D. V., Griffiths, S.-H. Jiang, A. Giacomini, & R. Kelly (Eds.), 8th International Symposiumon Geotechnical Safety and Risk (ISGSR) (pp. 303–308). https://doi.org/10.3850/978-981-18-5182-7_04-007-cd
  40. Sert, S., Luo, Z., Xiao, J., Gong, W., & Juang, C. H. (2016). Probabilistic analysis of responses of cantilever wall-supported excavations in sands considering vertical spatial variability. Computers and Geotechnics, 75, 182–191. https://doi.org/10.1016/j.compgeo.2016.02.004
  41. Simões, J. T., Neves, L. C., Antão, A. N., & Guerra, N. M. C. (2014). Probabilistic analysis of bearing capacity of shallow foundations using three-dimensional limit analyses. International Journal of Computational Methods, 11(2). https://doi.org/10.1142/S0219876213420085
  42. Zaskórski, L., & Puła, W. (2016). Calibration of characteristic values of soil properties using the random finite element method. Archives of Civil and Mechanical Engineering, 16(1), 112–124. https://doi.org/10.1016/j.acme.2015.09.007
DOI: https://doi.org/10.2478/sgem-2025-0002 | Journal eISSN: 2083-831X | Journal ISSN: 0137-6365
Language: English
Page range: 17 - 35
Submitted on: Jul 24, 2024
Accepted on: Dec 12, 2024
Published on: Feb 27, 2025
Published by: Wroclaw University of Science and Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Hubert Szabowicz, Marek Kawa, Wojciech Puła, published by Wroclaw University of Science and Technology
This work is licensed under the Creative Commons Attribution 4.0 License.