References
- Z. He, X. Zhu, J. Wang, M. Mu, Y. Wang, Comparison of CO 2 emissions from OPC and recycled cement production, Constr. Build. Mater. 211 (2019) 965–973.
https://doi.org/10.1016/j.conbuildmat.2019.03.289 . - F. Xu, X. Li, Q. Xiong, Y. Li, J. Zhu, F. Yang, T. Sun, C. Peng, J. Lin, Influence of aggregate reinforcement treatment on the performance of geopolymer recycled aggregate permeable concrete: From experimental studies to PFC 3D simulations, Constr. Build. Mater. 354 (2022) 1–16.
https://doi.org/10.1016/j.conbuildmat.2022.129222 . - S. Marathe, I.R. Mithanthaya, R.Y. Shenoy, Durability and microstructure studies on Slag-Fly Ash-Glass powder based alkali activated pavement quality concrete mixes, Constr. Build. Mater. 287 (2021) 1–19.
https://doi.org/10.1016/j.conbuildmat.2021.123047 . - A.H. Shalan, M. Asce, M.M. El-gohary, M. Asce, Influence of Sulfuric Acid Exposure on Mechanical Properties of Alkali-Activated Concrete, Pract. Period. Struct. Des. Constr. 29 (2024) 1–14.
https://doi.org/10.1061/PPSCFX.SCENG-1478 . - T.V. Nagaraju, A. Bahrami, M. Azab, S. Naskar, Development of sustainable high performance geopolymer concrete and mortar using agricultural biomass—A strength performance and sustainability analysis, Front. Mater. 10 (2023) 1–17.
https://doi.org/10.3389/fmats.2023.1128095 . - S. Mustafa, M.A. Hameed, A. Dulaimi, Eco-Friendly Geopolymer Concrete: A Critical Review, AIP Conf. Proc. 2806 (2023) 1–14.
https://doi.org/10.1063/5.0163551 . - A. Siva Krishna, V. Ranga Rao, Strength prediction of geopolymer concrete using ANN, Int. J. Recent Technol. Eng. 7 (2019) 661–667.
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85067899369&partnerID=40&md5=fcb80c688871b76b4410a593684ad25e . - A.A. Shahmansouri, H. Akbarzadeh Bengar, S. Ghanbari, Compressive strength prediction of eco-efficient GGBS-based geopolymer concrete using GEP method, J. Build. Eng. 31 (2020) 1–11.
https://doi.org/10.1016/j.jobe.2020.101326 . - I. Mansouri, M. Ostovari, P.O. Awoyera, J.W. Hu, Predictive modeling of the compressive strength of bacteria-incorporated geopolymer concrete using a gene expression programming approach, Comput. Concr. 24 (2021) 319–332.
https://doi.org/10.12989/cac.2021.27.4.319 . - M.A. Khan, S.A. Memon, F. Farooq, M.F. Javed, F. Aslam, R. Alyousef, Compressive Strength of Fly-Ash-Based Geopolymer Concrete by Gene Expression Programming and Random Forest, Adv. Civ. Eng. 2021 (2021).
https://doi.org/10.1155/2021/6618407 . - R. Biswas, A. Bardhan, P. Samui, B. Rai, S. Nayak, D.J. Armaghani, Efficient soft computing techniques for the prediction of compressive strength of geopolymer concrete, Comput. Concr. 28 (2021) 221–232.
https://doi.org/10.12989/cac.2021.28.2.221 . - M.A. Khan, A. Zafar, A. Akbar, M.F. Javed, A. Mosavi, Application of gene expression programming (GEP) for the prediction of compressive strength of geopolymer concrete, Materials (Basel). 14 (2021) 1–23.
https://doi.org/10.3390/ma14051106 . - K.K. Yaswanth, J. Revathy, P. Gajalakshmi, Soft Computing Techniques for the Prediction and Analysis of Compressive Strength of Alkali-Activated Alumino-Silicate Based Strain-Hardening Geopolymer Composites, Silicon. 14 (2022) 1985–2008.
https://doi.org/10.1007/s12633-021-00988-7 . - Q. Wang, W. Ahmad, A. Ahmad, F. Aslam, A. Mohamed, N.I. Vatin, Application of Soft Computing Techniques to Predict the Strength of Geopolymer Composites, Polymers (Basel). 14 (2022).
https://doi.org/10.3390/polym14061074 . - H.U. Ahmed, A.A. Mohammed, A. Mohammed, Soft computing models to predict the compressive strength of GGBS/FAgeopolymer concrete, PLoS One. 17 (2022) 1–28.
https://doi.org/10.1371/journal.pone.0265846 . - A. Jain, S. Marathe, S. Akhila, Soft computing modeling on air-cured slag-fly ash-glass powder-based alkali activated masonry elements developed using different industrial waste aggregates, Asian J. Civ. Eng. 24 (2023) 1515–1527.
https://doi.org/10.1007/s42107-023-00584-7 . - M.A.S. Hossain, M.N. Uddin, M.M. Hossain, Prediction of compressive strength fiber-reinforced geopolymer concrete (FRGC) using gene expression programming (GEP), Mater. Today Proc. (2023).
https://doi.org/10.1016/j.matpr.2023.02.458 . - W. Dong, Y. Huang, A. Cui, G. Ma, Mix design optimization for fly ash-based geopolymer with mechanical, environmental, and economic objectives using soft computing technology, J. Build. Eng. 72 (2023) 1–15.
https://doi.org/10.1016/j.jobe.2023.106577 . - S. Shamim Ansari, S. Muhammad Ibrahim, S. Danish Hasan, Conventional and Ensemble Machine Learning Models to Predict the Compressive Strength of Fly Ash Based Geopolymer Concrete, Mater. Today Proc. (2023).
https://doi.org/10.1016/j.matpr.2023.04.393 . - H.U. Ahmed, R.R. Mostafa, A. Mohammed, P. Sihag, A. Qadir, Support vector regression (SVR) and grey wolf optimization (GWO) to predict the compressive strength of GGBFS-based geopolymer concrete, Neural Comput. Appl. 35 (2023) 2909–2926.
https://doi.org/10.1007/s00521-022-07724-1 . - X. Shi, S. Chen, Q. Wang, Y. Lu, S. Ren, J. Huang, Mechanical Framework for Geopolymer Gels Construction: An Optimized LSTM Technique to Predict Compressive Strength of Fly Ash-Based Geopolymer Gels Concrete, Gels. 10 (2024).
https://doi.org/10.3390/gels10020148 . - Y. Li, G. Wang, M.N. Amin, B. Iftikhar, Y. Dodo, F. Althoey, A.F. Deifalla, Fresh state and strength performance evaluation of slag-based alkali-activated concrete using soft-computing methods, Mater. Today Commun. 38 (2024) 1–14.
https://doi.org/10.1016/j.mtcomm.2023.107822 . - IS-2386:Part-I, Indian Standard Method of Test for aggregate for concrete; Part I - Particle size and shape, (1963) 1–26.
- IS:2386(Part III), Method of Test for aggregate for concrete, (1963) 1–17.
- IS 2386(Part IV), Methods of Test for Aggregates for Concrete - Mechanical Properties, (1963) 1–28.
- IS:383, Coarse and Fine Aggregate for Concrete — Specification, (2016) 1–21.
- IRC:44, Guidelines for Cement Concrete Mix Design for Pavements, (2017) 1–60.
- S. Marathe, I.R. Mithanthaya, B.M. Mithun, S. Shetty, A. P. K, Performance of slag-fly ash based alkali activated concrete for paver applications utilizing powdered waste glass as a binding ingredient, Int. J. Pavement Res. Technol. (2020).
https://doi.org/10.1007/s42947-020-0173-2 . - IS 516 (Part 1-Sec 1), Hardened concrete-Methods of test: Part 1 Testing of Strength of Hardened Concrete, Section 1 Compressive, Flexural and Split Tensile Strength, (2021) 1–9.
www.standardsbis.in . - J.T. Kevern, D. Biddle, Q. Cao, Effects of Macrosynthetic Fibers on Pervious Concrete Properties, J. Mater. Civ. Eng. 27 (2015) 06014031.
https://doi.org/10.1061/(asce)mt.1943-5533.0001213 . - F. Montes, L. Haselbach, Measuring hydraulic conductivity in pervious concrete, Environ. Eng. Sci. 23 (2006) 960–969.
https://doi.org/10.1089/ees.2006.23.960 . - M.V. Kamath, S. Prashanth, M. Kumar, A. Tantri, Machine-Learning-Algorithm to predict the High-Performance concrete compressive strength using multiple data, J. Eng. Des. Technol. 22 (2024) 532–560.
https://doi.org/10.1108/JEDT-11-2021-0637 . - A. Anjum, M. Hrairi, A. Aabid, N. Yatim, M. Ali, Damage detection in concrete structures with impedance data and machine learning, Bull. Polish Acad. Sci. Tech. Sci. 72 (2024) 1–11.
https://doi.org/10.24425/bpasts.2024.149178 . - M.I. Khan, Y.M. Abbas, Robust extreme gradient boosting regression model for compressive strength prediction of blast furnace slag and fly ash concrete, Mater. Today Commun. 35 (2023) 105793.
https://doi.org/10.1016/j.mtcomm.2023.105793 . - S. Paudel, A. Pudasaini, R.K. Shrestha, E. Kharel, Compressive strength of concrete material using machine learning techniques, Clean. Eng. Technol. 15 (2023) 1–17.
https://doi.org/10.1016/j.clet.2023.100661 . - G.T. Truong, K.K. Choi, T.H. Nguyen, C.S. Kim, Prediction of shear strength of RC deep beams using XGBoost regression with Bayesian optimization, Eur. J. Environ. Civ. Eng. 27 (2023) 4046–4066.
https://doi.org/10.1080/19648189.2023.2169357 . - L.R. Kalabarige, J. Sridhar, S. Subbaram, P. Prasath, R. Gobinath, Machine Learning Modeling Integrating Experimental Analysis for Predicting Compressive Strength of Concrete Containing Different Industrial Byproducts, Adv. Civ. Eng. (2024) 1–11.
https://doi.org/10.1155/2024/7844854 . - S.S. Pakzad, N. Roshan, M. Ghalehnovi, Comparison of various machine learning algorithms used for compressive strength prediction of steel fiber-reinforced concrete, Sci. Rep. 13 (2023) 1–15.
https://doi.org/10.1038/s41598-023-30606-y . - S. Marathe, T.S. Shetty, B.M. Mithun, A. Ranjith, Strength and durability studies on air cured alkali activated pavement quality concrete mixes incorporating recycled aggregates, Case Stud. Constr. Mater. 15 (2021) 1–13.
https://doi.org/10.1016/j.cscm.2021.e00732 . - E.L.C. Filho, G.C. Dos Santos Ferreira, D.C. Nogarotto, S.A. Pozza, Pervious concrete with waste foundry sand: Mechanical and hydraulic properties, Rev. Mater. 27 (2022) e13154.
https://doi.org/10.1590/S1517-707620220001.1354 . - K.S. Elango, D. Vivek, G.K. Prakash, M.J. Paranidharan, S. Pradeep, M. Prabhukesavaraj, Strength and permeability studies on PPC binder pervious concrete using palm jaggery as an admixture, Mater. Today Proc. 37 (2020) 2329–2333.
https://doi.org/10.1016/j.matpr.2020.08.006 . - Y. Zhang, H. Li, A. Abdelhady, J. Yang, Comparative laboratory measurement of pervious concrete permeability using constant-head and falling-head permeameter methods, Constr. Build. Mater. 263 (2020) 1–11.
https://doi.org/10.1016/j.conbuildmat.2020.120614 . - IS:456, Plain and Reinforced Concrete-Code of Practice, (2000) 1–100.
- P.G. Asteris, A.D. Skentou, A. Bardhan, P. Samui, K. Pilakoutas, Predicting concrete compressive strength using hybrid ensembling of surrogate machine learning models, Cem. Concr. Res. 145 (2021) 1–23.
https://doi.org/10.1016/j.cemconres.2021.106449 . - Ł. Sadowski, M. Piechówka-Mielnik, T. Widziszowski, A. Gardynik, S. Mackiewicz, Hybrid ultrasonic-neural prediction of the compressive strength of environmentally friendly concrete screeds with high volume of waste quartz mineral dust, J. Clean. Prod. 212 (2019) 727–740.
https://doi.org/10.1016/j.jclepro.2018.12.059 .