References
- Bieniasz, J., Wojnar, W., Sadowski, A. & Wrzosek, J. (2011). Convergence of large depth mining excavations in salt rock formations. Geologia, 37/2, 207–214.
- Chen, S., Walske, M. & Davies, I. (2018). Rapid mapping and analysing rock mass discontinuities with 3D terrestrial laser scanning in the underground excavation. International Journal of Rock Mechanics and Mining Sciences, 110, 28–35.
- Chena, S., Walskeb, M.L. & Daviesc, I.J. (2018), Rapid mapping and analysing rock mass discontinuities with 3D terrestrial laser scanning in the underground excavation. International Journal of Rock Mechanics and Mining Sciences, 110, 28–35.
- Diaz, V., van Oosterom, P., Meiijers, M., Verbree, E., Ahmed, N. & van Lankveld, T. (2024). Comparison of Cloud-to-Cloud Distance Calculation Methods - Is the Most Complex Always the Most Suitable? Recent Advances in 3D Geoinformation Science, 329–334
- Fan, L., Smethurst, J., Atkinson, P. & Powrie, W. (2015). Error in target-based georeferencing and registration in terrestrial laser scanning. Computers & Geosciences, 83, 54–64.
- Ge, Y., Tang, H., Xia, D., Wang, L., Zhao, B., Teaway, J.W., Chen, H. & Zhou, T. (2018). Automated measurements of discontinuity geometric properties from a 3D-point cloud based on a modified region growing algorithm. Engineering Geology, 242, 44–54.
- Humair, F., Abellan, A., Carrea, D., Matasci, B., Epard, J-L. & Jaboyedoff, M. (2015). Geological layers detection and characterisation using high resolution 3D point clouds: example of a box-fold in the Swiss Jura Mountains. European Journal of Remote Sensing, 48, 541–568.
- Janus, J. & Krawczyk, J. (2021). Measurement and Simulation of Flow in a Section of a Mine Gallery. Energies. 14(16):4894.
- Jones, E. (2020). Mobile LiDAR for underground geomechanics: learnings from the teens and directions for the twenties. Second International Conference on Underground Mining Technology (pages 3–26). Crawley, Australia: Australian Centre for Geomechanics.
- Kajzar, V., Kukutsch, R. & Heroldova, N. (2015). Verifying the possibilities of using a 3D laser scanner in the mining underground. Acta Geodynamica et Geomaterialia, 12, 1 (177), 51–58.
- Kukutsch, R., Kajzar, V., Konicek, P., Waclawik P. & Ptacek J. (2015). Possibility of convergence measurement of gates in coal mining using terrestrial 3D laser scanner. Journal of Sustainable Mining, 14, 30–37.
- Krawczyk, A. (2023). Mining Geomatics. ISPRS International Journal of Geo-Information, page 278.
- Lai, P. & Samson, C. (2016), Applications of mesh parameterization and deformation for unwrapping 3D images of rock tunnels. Tunnelling and Underground Space Technology, 58, 109–119.
- Leica TS16 Total Station User manual. (2024). Access:
http://surveyteq.com/uploads/p_4728DC68-531B-1855-1437-C5BD241629A2-1608810446.pdf - Lipecki, T. & Jaśkowski, W. (2009). Application of laser scanners to determine the shape of mine excavations for safety assessment, using the example of the cross-cut Mina in the Salt Mine Wieliczka. Reports on Geodesy, 2/87, 239–250.
- Lipecki, T., Jaśkowski, W., Gruszyński, W., Matwij, K., Matwij, W. & Ulmaniec, P. (2015). Inventory of the geometric condition of inanimate nature reserve Crystal Caves in “Wieliczka” Salt Mine. Acta Geoldaetica et Geophysica, Volume 51, pages 257–272.
- Liu, X., Zhang, X., Wang, L., Qu, F., Shao, A., Zhao, L., Wang, H., Yue, X., Li, Y., Yan, W. & He, J. (2024). Research progress and prospects of intelligent technology in underground mining of hard rock mines. Green and Smart Mining Engineering, In Press.
- Mah, J., Samson, C., McKinnon, S.D. & Thibodeau, D. (2013). 3D laser imaging for surface roughness analysis. International Journal of Rock Mechanics and Mining Sciences, 58, 111–117.
- Moon, D., Chung, S., Kwon, S., Seo, J. & Shin, J. (2019). Comparison and utilization of point cloud generated from photogrammetry and laser scanning: 3D world model for smart heavy equipment planning. Automation in Construction, 98, 322–331.
- Mukupa, W., Roberts, G.W., Hancock, C.M. & Al-Manasir, K. (2017). A review of the use of terrestrial laser scanning application for change detection and deformation monitoring of structures. Survey Review, 49:353, 99–116.
- Nghia, N. V., Long, N. Q., Cuc, N. T. & Bui, X.-N. (2019). Applied Terrestrial Laser Scanning for coal mine high definition mapping. World of Mining - Surface and Underground, 71(4), 237–242.
- Piestrzyński, A., Banaszak, A. & Zalewska-Kuczmierczyk, M. (2007). Sól kamienna na obszarze przedsudeckim. Chapter in: Monografia KGHM. Lubin: KGHM CUPRUM Sp. z o.o. CBR.
- Singh, S. K., Banerjee, B. P. & Raval, S. (2021). Three-Dimensional Unique-Identifier-Based Automated Georeferencing and Coregistration of Point Clouds in Underground Mines. Remote Sensing, 13(16):3145.
- Singh, S.K., Banerjee, B.P. & Raval, S. (2023). A review of laser scanning for geological and geotechnical applications in underground mining. International Journal of Mining Science and Technology. 33, 133–154.
- Technical specification sheet for Faro FOCUS S 350. (2024). Access:
https://knowledge.faro.com/Hardware/Focus/Focus/Technical_Specification_Sheet_for_the_Focus_Laser_Scanner - Technical specification sheet for LeicaFlexLine TS09plus Total Station. (2024). Access:
https://www.sccssurvey.co.uk/leica-flexline-ts09plus-total-station.html - Watson, C. & Marshall, J. (2018). Estimating underground mine ventilation friction factors from low density 3D data acquired by a moving LiDAR. International Journal of Mining Science and Technology, 28, 657–662.
- Zeb Horizon - User manual. (2020). Access:
https://geoslam.com/wp-content/uploads/2021/02/ZEB-Horizon-User-Manual-v1.3.pdf