Have a personal or library account? Click to login
Application of generalized boundary conditions for homogenization of thermal and filtration properties of soils Cover

Application of generalized boundary conditions for homogenization of thermal and filtration properties of soils

Open Access
|Nov 2023

References

  1. Davis, T. A. (2004, June). Algorithm 832: UMFPACK V4.3—an unsymmetric-pattern multifrontal method. ACM Transactions on Mathematical Software, 30 (2), 196–199. doi: 10.1145/992200.992206
  2. Geuzaine, C., & Remacle, J.-F. (2009). Gmsh: A 3-D finite element mesh generator with built-in pre- and post-processing facilities. International Journal for Numerical Methods in Engineering, 79 (11), 1309–1331. doi: 10.1002/nme.2579
  3. Gitman, I. M., Askes, H., & Sluys, L. J. (2007, November). Representative volume: Existence and size determination. Engineering Fracture Mechanics, 74 (16), 2518–2534. doi: 10.1016/j.engfracmech.2006.12.021
  4. Hazanov, S., & Amieur, M. (1995, July). On overall properties of elastic heterogeneous bodies smaller than the representative volume. International Journal of Engineering Science, 33 (9), 1289–1301. doi: 10.1016/0020-7225(94)00129-8
  5. Hazanov, S., & Huet, C. (1994, December). Order relationships for boundary conditions effect in heterogeneous bodies smaller than the representative volume. Journal of the Mechanics and Physics of Solids, 42 (12), 1995–2011. doi: 10.1016/0022-5096(94)90022-1
  6. Hill, R. (1963, September). Elastic properties of reinforced solids: Some theoretical principles. Journal of the Mechanics and Physics of Solids, 11 (5), 357–372. doi: 10.1016/0022-5096(63)90036-X
  7. Hill, R. (1965, August). A self-consistent mechanics of composite materials. Journal of the Mechanics and Physics of Solids, 13 (4), 213–222. doi: 10.1016/0022-5096(65)90010-4
  8. Huet, C. (1990, January). Application of variational concepts to size effects in elastic heterogeneous bodies. Journal of the Mechanics and Physics of Solids, 38 (6), 813–841. doi: 10.1016/0022-5096(90)90041-2
  9. Kanit, T., Forest, S., Galliet, I., Mounoury, V., & Jeulin, D. (2003, June). Determination of the size of the representative volume element for random composites: Statistical and numerical approach. International Journal of Solids and Structures, 40 (13), 3647–3679. doi: 10.1016/S0020-7683(03)00143-4
  10. Khisaeva, Z. F., & Ostoja-Starzewski, M. (2006, August). On the Size of RVE in Finite Elasticity of Random Composites. Journal of Elasticity, 85 (2), 153. doi: 10.1007/s10659-006-9076-y
  11. Mechleb, G., Gilbert, R., Christman, M., Gupta, R., & Gross, B. (2014, March). Use of Expanded Shale Amendment to Enhance Drainage Properties of Clays. Geo-Congress 2014 Technical Papers, 3444–3454. doi: 10.1061/9780784413272.334
  12. Ogierman, W., & Kokot, G. (2018, October). Generation of the representative volume elements of composite materials with misaligned inclusions. Composite Structures, 201, 636–646. doi: 10.1016/j.compstruct.2018.06.086
  13. Ostoja-Starzewski, M. (2006, April). Material spatial randomness: From statistical to representative volume element. Probabilistic Engineering Mechanics, 21 (2), 112–132. doi: 10.1016/j.probengmech.2005.07.007
  14. Pabst, W., & Gregorov’a, E. (2012, November). The sigmoidal average – a powerful tool for predicting the thermal conductivity of composite ceramics. Journal of Physics: Conference Series, 395 (1), 012021. doi: 10.1088/1742-6596/395/1/012021
  15. Ranganathan, S. I., & Ostoja-Starzewski, M. (2008, September). Scaling function, anisotropy and the size of RVE in elastic random polycrystals. Journal of the Mechanics and Physics of Solids, 56 (9), 2773–2791. doi: 10.1016/j.jmps.2008.05.001
  16. Savvas, D., Stefanou, G., & Papadrakakis, M. (2016, June). Determination of RVE size for random composites with local volume fraction variation. Computer Methods in Applied Mechanics and Engineering, 305, 340–358. doi: 10.1016/j.cma.2016.03.002
  17. Stefaniuk, D., Różański, A., & Łydżba, D. (2016). Recovery of microstructure properties: Random variability of soil solid thermal conductivity. Studia Geotechnica et Mechanica, Vol. 38 (nr 1). doi: 10.1515/sgem-2016-0011
  18. Trovalusci, P., Ostoja-Starzewski, M., De Bellis, M. L., & Murrali, A. (2015, January). Scale-dependent homogenization of random composites as micropolar continua. European Journal of Mechanics - A/Solids, 49, 396–407. doi: 10.1016/j.euromechsol.2014.08.010
  19. Wojciechowski, M. (n.d.). Fempy - finite element method in python. https://github.com/mrkwjc/fempy; http://fempy.org.
  20. Wojciechowski, M. (2017, September). Minimal Kinematic Boundary Conditions for Computational Homogenization of the Permeability Coefficient. Acta Mechanica et Automatica, 11 (3), 199–203. doi: 10.1515/ama-2017-0030
  21. Wojciechowski, M. (2022a, August). Dataset for random uniform distributions of 2D circles and 3D spheres. Data in Brief, 43, 108318. doi: 10.1016/j.dib.2022.108318
  22. Wojciechowski, M. (2022b, August). On generalized boundary conditions for mesoscopic volumes in computational homogenization. Composite Structures, 294, 115718. doi: 10.1016/j.compstruct.2022.115718
DOI: https://doi.org/10.2478/sgem-2023-0025 | Journal eISSN: 2083-831X | Journal ISSN: 0137-6365
Language: English
Page range: 362 - 369
Submitted on: Feb 28, 2023
|
Accepted on: Aug 21, 2023
|
Published on: Nov 30, 2023
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2023 Marek Wojciechowski, published by Wroclaw University of Science and Technology
This work is licensed under the Creative Commons Attribution 4.0 License.