References
- Güneyli, H., Rüşen, T.: Effect of length-to-diameter ratio on the unconfined compressive strength of cohesive soil specimens. Bull. Eng. Geol. Environ. 75, 793–806 (2016). https://doi.org/10.1007/s10064-015-0835-5
- Yilmaz, Y., Eun, J., Panahi, S.S., Mousavi, M.S.: Effects of height-to-diameter ratio (H/D) for specimens with various water contents on unconfined compressive strength of a clayey soil. Eng. Geol. 257, 105136 (2019). https://doi.org/10.1016/j.enggeo.2019.05.013
- Wang, N., Zhang, J., Liao, R., Lv, R., Zhang, L., He, F.: Study on the Size Effect of Unconfined Compressive Strength of Rammed Earthen Site's Soil Samples. J. Mater. Civ. Eng. 32, 4019343 (2020). https://doi.org/10.1061/(ASCE)MT.1943-5533.0003009
- ASTM, D.: 2166/D 2166M (2013) Standard test method for unconfined compressive strength of cohesive soil. ASTM Int. West Conshohocken.
- Dhani, N., Gasruddin, A., Hartini, H., Baride, L.: Unconfined Compressive Strength Characteristics of Overboulder Asbuton and Zeolite Stabilized Soft Soil. Civ. Eng. J. 7, 40–48 (2021). https://doi.org/10.28991/cej-2021-03091635
- ASTM: ASTM D2166 – 06: Standard Test Method for Unconfined Compressive Strength of Cohesive Soil., West Conshohocken (2007)
- Standard, B.: BS 1377-7, Methods of test for Soils for civil engineering purposes-Part 7: Shear strength tests (total stress). London UK Br. Stand. Ist. (1999)
- Standard, B.: Methods of tests for stabilized soils. Br. Stand. Institute, London. (1990)
- Türk Standardlari Enstitüsü: Methods of testing soils for civil engineering purposes in the laboratory - Part 2: Determination of mechanical properties. (2006)
- Kalinski, M.E.: Soil mechanics: lab manual. John Wiley & Sons (2011)
- Moores, E.R., Hoover, J.M.: The Influence of Slenderness Ratios on Triaxial Shear Testing. In: Proceedings of the Iowa Academy of Science. pp. 285–292 (1966)
- Verveckaite, N., Amsiejus, J., Stragys, V.: Stress - strain analysis in the soil sample during laboratory testing. J. Civ. Eng. Manag. XIII, 63–70 (2007). https://doi.org/10.1080/13923730.2007.9636420
- Ghosh, R.: Effect of soil moisture in the analysis of undrained shear strength of compacted clayey soil. J. Civ. Eng. Constr. Technol. 4, 23–31 (2013). https://doi.org/10.5897/JCECT12.070
- Omar, T., Sadrekarimi, A.: Effect of Triaxial Specimen Size on Engineering Design and Analysis. Int. J. Geo-Engineering. (2015). https://doi.org/10.1186/s40703-015-0006-3
- Ang, E.C., Loehr, J.E.: Specimen size effects for fiber-reinforced silty clay in unconfined compression. Geotech. Test. J. 26, 191–200 (2003). https://doi.org/10.1520/GTJ11320J
- Shogaki, T.: Effect of specimen size on unconfined compressive strength properties of natural deposits. Soils Found. 47, 119–129 (2007). https://doi.org/10.3208/sandf.47.119
- Matsuo, M., Shogaki, T.: Effects of plasticity and sample disturbance on statistical properties of undrained shear strength. Soils Found. 28, 14–24 (1988). https://doi.org/10.3208/sandf1972.28.2_14
- Al-Rkaby, A.H.J., Alafandi, Z.M.S.: Size effect on the unconfined compressive strength and Modulus of elasticity of limestone rock. Electron. J. Geotech. Eng. 20, 1393–1401 (2015)
- Verveckaite, N., Amsiejus, J., Stragys, V.: Stress-strain analysis in the soil sample during laboratory testing. J. Civ. Eng. Manag. 13, 63–70 (2007)
- Skuodis, Š., Dirgėlienė, N., Lekstutytė, I.: Change of soil mechanical properties due to triaxial sample size. (2019). https://doi.org/10.3846/mbmst.2019.006
- Smith, G.N.: Probability and statistics in civil engineering. Collins Prof. Tech. books. 244, (1986)
- ASTM. (2007a). ASTM D 698 – 07: Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort (12 400 ft-lbf/ft3 (600 kN-m/m3)) 1. In Annual Book of ASTM Standards (Vol. 3, pp. 1–13). Annual book of ASTM standards.