References
- European Committee for Standardization. (2005). Eurocode 8: Design of structures for earthquake resistance-Part 1: General rules, seismic actions and rules for buildings. EN 1998-1-1. Brussels.
- UBC Standards. (1997). Volume 2 of the Uniform Building Code: Structural engineering design provisions. UBC97. Whittier.
- Louzai, A. & Abed, A. (2015). Evaluation of the seismic behavior factor of reinforced concrete frame structures based on comparative analysis between non-linear static pushover and incremental dynamic analyses. Bulletin of Earthquake Engineering, 13 (6), 1773–1793. DOI:10.1007/s10518-014-9689-7.
- Elghazouli, A. Y. (2010). Assessment of European seismic design procedures for steel framed structures. Bulletin of Earthquake Engineering, 8 (1), 65–89. DOI:10.1007/s10518-009-9125-6.
- Ferraioli, M., Lavino, A. & Mandara, A. (2014). Behaviour Factor of Code-Designed Steel Moment-Resisting Frames. International Journal of Steel Structures, 14 (2), 243–254. DOI:10.1007/s13296-014-2005-1.
- Balendra, T. & Huang, X. (2003). Overstrength and Ductility Factors for Steel Frames Designed According to BS 5950. Journal of Structural Engineering ASCE, 129 (8), 1019–1035. DOI: http://dx.doi.org/10.1061/(ASCE)0733-9445(2003)129:8(1019).
- Kim, J. & Choi, H. (2005). Response modification factors of chevron-braced frames. Engineering Structures, 27 (2), 285–300. DOI:10.1016/j.engstruct.2004.10.009.
- Mahmoudi, M. & Zaree, M. (2010). Evaluating response modification factors of concentrically braced steel frames. Journal of Constructional Steel Research, 66 (10), 1196–1204. https://doi.org/10.1016/j.jcsr.2010.04.004.
- Faggiano, B., Antonio Formisano, L. F., Macillo, V., Castaldo, C. & Mazzolani, F. M. (2014). Assessment of the Design Provisions for Steel Concentric X Bracing Frames with Reference to Italian and European Codes. The Open Construction and Building Technology Journal, 8 (Suppl 1: M3), 208–215. http://dx.doi.org/10.2174/1874836801408010208.
- Fanaie, N. & Shamlou, S. O. (2015). Response modification factor of mixed structures. Steel and Composite Structures, An International Journal, 19 (6), 1449–1466. DOI: 10.12989/scs.2015.19.6.1449.
- Kheyrodin, A. & Mashadiali, N. (2018). Response modification factor of concentrically braced frames with hexagonal pattern of braces. Journal of Constructional Steel Research, 148, 658–668. https://doi.org/10.1016/j.jcsr.2018.06.024.
- European Committee for Standardization. (2005). Eurocode 3: Design of steel structures-Part 1: General rules and rules for buildings. EN 1993-1-1. Brussels.
- Azad, S. K., Topkaya, C. & Astaneh-Asl, A (2017). Seismic behaviour of concentrically braced frames designed to AISC341 and EC8 provisions. Journal of Constructional Steel Research, 133, pp. 383–404. https://doi.org/10.1016/j.jcsr.2017.02.026.
- Ostraas, J. D., & Kraeinkler, H. (1990). STRENGTH AND DUCTILITY CONSIDERATIONS IN SEISMIC DESIGN. The John A. Blume Earthquake Engineering Center, Department of Civil and Environmental Engineering, Stanford University, California, USA. (Report No.90).
- Rahgozar, M. A. & Humar, J. L. (1998). Accounting for overstrength in seismic design of steel structures. Canadian Journal of Civil Engineering, 25 (1), 1–15. DOI: 10.1139/l97-045.
- Fanaie, N. & Afsar Dizaj, E. (2014). Response modification factor of the frames braced with reduced yielding segment BRB. Structural Engineering and Mechanics, An International Journal, 50 (1), 1–17. DOI: 10.12989/sem.2014.50.1.001.
- Attia, W. A. & Irheem, M. M. M. (2018). Boundary condition effect on response modification factor of X-braced steel frames, HBRC Journal, 4 (1), pp. 104–121. https://doi.org/10.1016/j.hbrcj.2016.03.002.
- Kappos, A. J. (1999). Evaluation of behaviour factors on the basis of ductility and overstrength studies. Engineering Structures, 21 (9), 823–835. DOI: http://dx.doi.org/10.1016/S0141-0296(98)00050-9.
- Mazzolani, F. M. & Piluso, V. (1996). Theory and Design of Seismic Resistant Steel Frames. London: E & FN Spon, An imprint of Chapman & Hall.
- ATC Standards. (1995). Applied Technology Council: A critical review of current approaches to earthquake-resistant design. ATC-34. Redwood City.
- Abdollahzadeh, G. & Banihashemi, M. (2013). Response modification factor of dual moment-resistant frame with buckling restrained brace (BRB). Steel and Composite Structures, An International Journal, 14 (6), 621–636. DOI: 10.12989/scs.2013.14.6.621.
- Yahmi, D., Branci, T., Bouchaïr, A. & Fournely, E. (2018). Evaluating the Behaviour Factor of Medium Ductile SMRF Structures. Periodica Polytechnica Civil Engineering, 62 (2), 373–385. https://doi.org/10.3311/PPci.10419.
- Dehghani, E., Hamidi, S. A., Tehrani, F. M., Goyal, A., Mirghaderi, R. (2015). New Practical Approach to Plastic Analysis of Steel Structures. Periodica Polytechnica Civil Engineering, 59 (1), 27–35. https://doi.org/10.3311/PPci.7578.
- Nassar, A., & Krawinkler, H. (1991). Seismic demands for SDOF and MDOF systems. The John A. Blume Earthquake Engineering Center, Department of Civil and Environmental Engineering, Stanford University, California, USA. (Report No. 95).
- Fajfar, P. (2000). A nonlinear analysis method for performance based seismic design. Earthquake Spectra, 16 (3), 573–592. DOI: http://dx.doi.org/10.1193/1.1586128.
- Mahmoudi, M. & Zaree, M. (2013). Determination the response modification factors of buckling restrained braced frames. Procedia Engineering, 54, 222–231. DOI:10.1016/j.proeng.2013.03.020.
- Yahmi, D., Branci, T., Bouchaïr, A. & Fournely, E. (2017). Evaluation of behaviour factors of steel moment-resisting frames using standard pushover method. Procedia Engineering, 199, 397–403. https://doi.org/10.1016/j.proeng.2017.09.130.
- Farshid, F. & Sepideh, R. (2020). Supervised probabilistic failure prediction of tuned mass damper-equipped high steel frames using machine learning methods. Studia Geotechnica et Mechanica, 42(3), 179–190. https://doi.org/10.2478/sgem-2019-0043.
- Kamaris, G. S., Vallianatou, Y. M. & Beskos, D. E. (2012). Seismic damage estimation of in-plane regular steel moment resisting and x-braced frames. Bulletin of Earthquake Engineering, 10 (6), 1745–1766. DOI: 10.1007/s10518-012-9387-2.
- Computers and Structures Inc. (CSI). (2010). Structural Analysis Program: Linear and nonlinear static and dynamic analysis of three-dimensional structures. SAP2000. Berkeley.
- Mondal, A., Ghosh, S. & Reddy, G. R. (2013). Performance-based evaluation of the response reduction factor for ductile RC frames. Engineering Structures, 56, 1808–1819. DOI: http://dx.doi.org/10.1016/j.engstruct.2013.07.038.
- Federal Emergency Management Agency. (2000). American Society of Civil Engineers: Prestandard and Commentary for the Seismic Rehabilitation of Buildings. FEMA 356. Washington.
- Gholipour, M. & Alinia, M. M. (2016). Considerations on the Pushover Analysis of Multi-Story Steel Plate Shear Wall Structures. Periodica Polytechnica Civil Engineering, 60 (1), 113–126. https://doi.org/10.3311/PPci.7706.
- Branci, T., Yahmi, D. & BOUYAKOUB, S. (2020). ANALYSE STATIQUE NON LINÉAIRE D’OSSATURES MÉTALLIQUES CONTREVENTÉES PAR PALÉES EN X. ALGÉRIE ÉQUIPEMENT, 62, 01–07.
- Karavasilis, T. L., Bazeos, N. & Beskos, D. E. (2006). Maximum displacement profiles for the performance based seismic design of plane steel moment resisting frames. Engineering Structures, 28(1), 9–22. DOI: 10.1016/j.engstruct.2005.06.021.
- Banihashemi, M. R., Mirzagoltabar, A. R. & Tavakoli, H. R. (2015). Development of the performance based plastic design for steel moment resistant frame. International Journal of Steel Structures, 15 (1), 51–62. DOI: 10.1007/s13296-015-3004-6.
- Xiong, E., He, H., Cui, F. & Bai, L. (2016). Performance-Based Plastic Design Method for Steel Concentrically Braced Frames Using Target Drift and Yield Mechanism. Periodica Polytechnica Civil Engineering, 60 (1), 127–134. https://doi.org/10.3311/PPci.7383.
- Branci, T., Yahmi, D., Bouchaïr, A. & Fournely, E. (2016). Evaluation of Behavior Factor for Steel Moment-Resisting Frames. International Journal of Civil and Environmental Engineering, 10(3), 358–362. doi.org/10.5281/zenodo.1123588.