Have a personal or library account? Click to login
Probabilistic Liquefaction Analysis Using Standard Penetration Test Cover

Probabilistic Liquefaction Analysis Using Standard Penetration Test

Open Access
|Jun 2022

References

  1. Al-Zoubi, M. S. (2015). Reliability-based determination of the coefficients of lateral earth pressure on retaining walls subjected to seismic loading. Jordan Journal of Civil Engineering, 9(4), 421–434. https://doi.org/10.14525/jjce.9.4.3115
  2. Bagheripour, M. H., I. Shooshpasha, and M. Afzalirad. (2012). “A Genetic Algorithm Approach for Assessing Soil Liquefaction Potential Based on Reliability Method.” Journal of Earth System Science 121 (1): 45–62. doi:10.1007/s12040-012-0137-2.
  3. Boulanger, R., & Idriss, I. (2004). Evaluating the potential for liquefaction or cyclic failure of silts and clays. Neuroscience Letters, 339(December), 123–126. https://doi.org/UCD/CGM-04/01
  4. Cetin, K. O., & Seed, R. B. (2004). Nonlinear shear mass participation factor (rd) for cyclic shear stress ratio evaluation. Soil Dynamics and Earthquake Engineering, 24(2), 103–113. http://doi.org/10.1016/j.soildyn.2003.10.008
  5. Cetin, K. Onder, Raymond B Seed, Robert E Kayen, Robb E. S Moss, H. Tolga Bilge, Makbule Ilgac, and Khaled Chowdhury. 2016). Summary of SPT Based Field Case History Data of CETIN (2016) Database. Ankara: METU / GTENG 08/16-01 Middle East Technical University. https://pubs.er.usgs.gov/publication/70184187.
  6. Dismuke, J. N. (2014). Nonlinear shear stress reduction factor (rd) for assessment of liquefaction potential in christchurch central business district. Bulletin of the New Zealand Society for Earthquake Engineering, 47(1), 1–14. http://doi.org/10.5459/bnzsee.47.1.1-14
  7. F, Rauch A. 1997. “Soil Liquefaction in Earthquakes.” university of Texas. http:/%0AScholarlib.vt.edu/theses/available/etd-219182249741411/%0Aunrestricted/chp02.pdf.
  8. Farrokhzad, F. (2016). Depth reduction factor assessment for evaluation of cyclic stress ratio based on site response analysis. Advances in Systems Science and Applications, 16(3), 33–51.
  9. Filali, K., & Sbartai, B. (2017). A comparative study between simplified and nonlinear dynamic methods for estimating liquefaction potential. Journal of Rock Mechanics and Geotechnical Engineering, 9(5), 955–966. https://doi.org/10.1016/j.jrmge.2017.05.008
  10. Goharzay, Maral, Ali Noorzad, Ahmadreza Mahboubi Ardakani, and Mostafa Jalal. (2017). “A Worldwide SPT-Based Soil Liquefaction Triggering Analysis Utilizing Gene Expression Programming and Bayesian Probabilistic Method.” Journal of Rock Mechanics and Geotechnical Engineering 9 (4): 683–693. doi:10.1016/j.jrmge.2017.03.011.
  11. Hwang, J. H., C. H. Chen, and C. H Juang. 2012. “Calibrating the Model Uncertainty of the HBF Simplified Method for Assessing Liquefaction Potential of Soils.” Sino-Geotechnics 133: 77–86. https://scholar.google.com/scholar_lookup?title=Calibratingthe model uncertainty of the HBF simplified method for assessing liquefaction potential of soils&journal=Sino-geotechnics&volume=133&pages=77-86&publication_year=2 012&author=Hwang%2CJH&author=Che.
  12. Hwang, Jin Hung, and Chin Wen Yang. (2001). “Verification of Critical Cyclic Strength Curve by Taiwan Chi-Chi Earthquake Data.” Soil Dynamics and Earthquake Engineering 21 (3): 237–257. doi:10.1016/S0267-7261(01)00002-1.
  13. Idriss, I M, and R W Boulanger. (2010). “Spt-Based Liquification Triggering Procedures.” Report UCD/CGM-10/02, no. December: 259. https://faculty.engineering.ucdavis.edu/boulanger/wp-content/uploads/sites/71/2014/09/Idriss_Boulanger_SPT_Liquefaction_CGM-10-02.pdf.
  14. Idriss, I M, and Ross W. Boulanger. (2008). Soil Liquefaction during Earthquakes. Oakland, California: Earthquake Engineering Research Institute. http://b-ok.org/dl/1129142/46a2fd.
  15. Idriss, I M, Joseph. I. S. (1992). User's Manual for SHAKE91. Center for Geotechnical Modeling (p. 75). Department of Civil Engineering, University of California, Davis.
  16. Idriss, I. M. (1999). An update to the Seed-Idriss simplified procedure for evaluating liquefaction potential. Proc., TRB Worshop on New Approaches to Liquefaction, Pubbl. n. FHWA-RD-99-165.
  17. Idriss, I. M., & Boulanger, R. W. (2003a). Estimating Kα for use in evaluating cyclic resistance of sloping ground. 8th US–Japan Workshop on Earthquake Resistant Design of Lifeline Facilities and Countermeasures against Liquefaction, Report MCEER-03-0003, MCEER, 449–468.
  18. Idriss, I. M., & Boulanger, R. W. (2003b). Estimating Kα for use in evaluating cyclic resistance of sloping ground. 8th US–Japan Workshop on Earthquake Resistant Design of Lifeline Facilities and Countermeasures against Liquefaction, Report MCEER-03-0003, MCEER, 449–468.
  19. Juang, C. H., Chen, C. J., Rosowsky, D. V., & Tang, W. H. (2000b). CPT-based liquefaction analysis, Part 2: Reliability for design. Geotechnique. https://doi.org/10.1680/geot.2000.50.5.593
  20. Juang, C. H., Chen, C. J., Tang, W. H., & Rosowsky, D. V. (2000a). CPT-based liquefaction analysis, Part 1: Determination of limit state function. Géotechnique, 50(5), 583–592. https://doi.org/10.1680/geot.2000.50.5.583
  21. Juang, C. H., Rosowsky, D. V., & Tang, W. H. (1999). Reliability-based method for assessing liquefaction potential of soils. Journal of Geotechnical and Geoenvironmental Engineering. https://doi.org/10.1061/(ASCE)1090-0241(1999)125:8(684)
  22. Juang, C. Hsein, Caroline J. Chen, Tao Jiang, and Ronald D. Andrus. (2000). “Risk-Based Liquefaction Potential Evaluation Using Standard Penetration Tests.” Canadian Geotechnical Journal 37 (6): 1195–1208. doi:10.1139/cgj-37-6-1195.
  23. Juang, C. Hsein, Sunny Ye Fang, Wilson H. Tang, Eng Hui Khor, Gordon Tung Chin Kung, and Jie Zhang. (2009). “Evaluating Model Uncertainty of an Spt-Based Simplified Method for Reliability Analysis for Probability of Liquefaction.” Soils and Foundations 49 (1): 135–152. doi:10.3208/sandf.49.135.
  24. Juang, C., Andrus, R., Jiang, T., & Chen, C. (2001). Probability-based liquefaction evaluation using shear wave velocity measurements. Proc., 4th Int. Conf. Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, 26–31.
  25. Juang, C., Jiang, T., & Andrus, R. D. (2002). Assessing probability-based methods for liquefaction potential evaluation. Journal of Geotechnical and Geoenvironmental Engineering, 128(7), 580–589. http://ascelibrary.org/doi/abs/10.1061/(ASCE)1090-0241(2002)128:7(580)
  26. Lasley, S. J., Green, R. A., & Rodriguez-Marek, A. (2016). New stress reduction coefficient relationship for liquefaction triggering analyses. Journal of Geotechnical and Geoenvironmental Engineering, 142(11). http://doi.org/10.1061/(ASCE)GT.1943-5606.0001530
  27. Liao, Samson S C, and Robert V Whitman. (1986). “Overburden Correction Factors for SPT in Sand.” Journal of Geotechnical Engineering 112 (3): 373–377. doi:10.1061/(ASCE)0733-9410(1986)112:3(373).
  28. National Center for Research on Earthquake Engineering (NCREE), National Advanced Project in Hazard Mitigation (NAPHM), and Taiwan Geotechnical Society (GST). (2001). Geotechnical Reconnaissance Report Of the 921 Ji-Ji Earthquake, Taiwan, 1999.
  29. Singh, P., Kumar, D., & Samui, P. (2020). Reliability analysis of rock slope using soft computing techniques. Jordan Journal of Civil Engineering, 14(1), 2020.
  30. Sebaaly, Graziella T., and Muhsin E. Rahhal. (2019). “Probabilistic Analysis of Soil Liquefaction Based on CPT and SPT Results.” In COMPDYN Proceedings, 1:141–150. doi:10.7712/120119.6908.19549.
  31. Seed, H B, K Tokimatsu, L F Harder, and R M Chung. (1985). “Influence of SPT Procedures in Soil Liquefaction Resistance Evaluations.” Journal of Geotechnical Engineering 111(12): 1425–45. http://ascelibrary.org/doi/abs/10.1061/(ASCE)0733-9410(1985)111:12(1425).
  32. Seed, H. B. (1979). Soil liquefaction and cyclic mobility evaluation for level ground during earthquakes. Journal of Geotechnical and Geoenvironmental Engineering, 105(GT2), 201–255. http://worldcat.org/oclc/3519342
  33. Seed, H. B., & Idriss, I. M. (1971). Simplified procedure for evaluating soil liquefaction potential. Journal of the Soil Mechanics and Foundations Division, 97(9), 1249–1273.
  34. Seed, H. B., & Idriss, I. M. (1982). Ground motions and soil liquefaction during earthquakes. Earthquake Engineering Research Institute.
  35. Seed, H. B., Idriss, I. M., & Arango, I. (1983). Evaluation of Liquefaction Potential Using Field Performance Data. Journal of Geotechnical Engineering, 109(3), 458–482. https://doi.org/10.1061/(ASCE)0733-9410(1983)109:3(458)
  36. Seed, H. Bolton. (1984). The Influence of SPT Procedures in Soil Liquefaction Resistance Evaluations. Report No. UCB/EERC-84/15. Berkeley: University of California, Earthquake Engineering Research Center. http://www.worldcat.org/title/influence-of-spt-procedures-in-soil-liquefaction-resistance-evaluations/oclc/11804853.
  37. Sun, R., Wang, K., & Yuan, X. (2020). Influencing Factors and New Calculation Formulae for the Stress Reduction Coefficient. Journal of Earthquake Engineering. http://doi.org/10.1080/13632469.2020.1739172
  38. Youd, B. T. L., Idriss, I. M., Andrus, R. D., Arango, I., Castro, G., Christian, J. T., Dobry, R., Finn, W. D. L., Jr, L. F. H., Hynes, M. E., Ishihara, K., Koester, J. P., Liao, S. S. C., Iii, W. F. M., Martin, G. R., Mitchell, J. K., Moriwaki, Y., Power, M. S., Robertson, P. K., … Ii, K. H. S. (2001). Liquefaction Resistance of Soils : Summary R Eport From the 1996 Nceer and 1998 Nceer / Nsf Workshops on Evaluation. Journal of Geotechnical and Geoenvironmental Engineering, 127(10), 817–833. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:10(817)
  39. Youd, T. L., & Noble, S. K. (1997). Magnitude scaling factors. NCEER Workshop on Evaluation of Liquefaction Resistance of Soils, 149–166. https://trid.trb.org/view.aspx?id=542970
DOI: https://doi.org/10.2478/sgem-2022-0009 | Journal eISSN: 2083-831X | Journal ISSN: 0137-6365
Language: English
Page range: 162 - 174
Published on: Jun 4, 2022
Published by: Wroclaw University of Science and Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2022 Filali Kamel, Sbartai Badreddine, published by Wroclaw University of Science and Technology
This work is licensed under the Creative Commons Attribution 4.0 License.