References
- Al-Zoubi, M. S. (2015). Reliability-based determination of the coefficients of lateral earth pressure on retaining walls subjected to seismic loading. Jordan Journal of Civil Engineering, 9(4), 421–434. https://doi.org/10.14525/jjce.9.4.3115
- Bagheripour, M. H., I. Shooshpasha, and M. Afzalirad. (2012). “A Genetic Algorithm Approach for Assessing Soil Liquefaction Potential Based on Reliability Method.” Journal of Earth System Science 121 (1): 45–62. doi:10.1007/s12040-012-0137-2.
- Boulanger, R., & Idriss, I. (2004). Evaluating the potential for liquefaction or cyclic failure of silts and clays. Neuroscience Letters, 339(December), 123–126. https://doi.org/UCD/CGM-04/01
- Cetin, K. O., & Seed, R. B. (2004). Nonlinear shear mass participation factor (rd) for cyclic shear stress ratio evaluation. Soil Dynamics and Earthquake Engineering, 24(2), 103–113. http://doi.org/10.1016/j.soildyn.2003.10.008
- Cetin, K. Onder, Raymond B Seed, Robert E Kayen, Robb E. S Moss, H. Tolga Bilge, Makbule Ilgac, and Khaled Chowdhury. 2016). Summary of SPT Based Field Case History Data of CETIN (2016) Database. Ankara: METU / GTENG 08/16-01 Middle East Technical University. https://pubs.er.usgs.gov/publication/70184187.
- Dismuke, J. N. (2014). Nonlinear shear stress reduction factor (rd) for assessment of liquefaction potential in christchurch central business district. Bulletin of the New Zealand Society for Earthquake Engineering, 47(1), 1–14. http://doi.org/10.5459/bnzsee.47.1.1-14
- F, Rauch A. 1997. “Soil Liquefaction in Earthquakes.” university of Texas. http:/%0AScholarlib.vt.edu/theses/available/etd-219182249741411/%0Aunrestricted/chp02.pdf.
- Farrokhzad, F. (2016). Depth reduction factor assessment for evaluation of cyclic stress ratio based on site response analysis. Advances in Systems Science and Applications, 16(3), 33–51.
- Filali, K., & Sbartai, B. (2017). A comparative study between simplified and nonlinear dynamic methods for estimating liquefaction potential. Journal of Rock Mechanics and Geotechnical Engineering, 9(5), 955–966. https://doi.org/10.1016/j.jrmge.2017.05.008
- Goharzay, Maral, Ali Noorzad, Ahmadreza Mahboubi Ardakani, and Mostafa Jalal. (2017). “A Worldwide SPT-Based Soil Liquefaction Triggering Analysis Utilizing Gene Expression Programming and Bayesian Probabilistic Method.” Journal of Rock Mechanics and Geotechnical Engineering 9 (4): 683–693. doi:10.1016/j.jrmge.2017.03.011.
- Hwang, J. H., C. H. Chen, and C. H Juang. 2012. “Calibrating the Model Uncertainty of the HBF Simplified Method for Assessing Liquefaction Potential of Soils.” Sino-Geotechnics 133: 77–86. https://scholar.google.com/scholar_lookup?title=Calibratingthe model uncertainty of the HBF simplified method for assessing liquefaction potential of soils&journal=Sino-geotechnics&volume=133&pages=77-86&publication_year=2 012&author=Hwang%2CJH&author=Che.
- Hwang, Jin Hung, and Chin Wen Yang. (2001). “Verification of Critical Cyclic Strength Curve by Taiwan Chi-Chi Earthquake Data.” Soil Dynamics and Earthquake Engineering 21 (3): 237–257. doi:10.1016/S0267-7261(01)00002-1.
- Idriss, I M, and R W Boulanger. (2010). “Spt-Based Liquification Triggering Procedures.” Report UCD/CGM-10/02, no. December: 259. https://faculty.engineering.ucdavis.edu/boulanger/wp-content/uploads/sites/71/2014/09/Idriss_Boulanger_SPT_Liquefaction_CGM-10-02.pdf.
- Idriss, I M, and Ross W. Boulanger. (2008). Soil Liquefaction during Earthquakes. Oakland, California: Earthquake Engineering Research Institute. http://b-ok.org/dl/1129142/46a2fd.
- Idriss, I M, Joseph. I. S. (1992). User's Manual for SHAKE91. Center for Geotechnical Modeling (p. 75). Department of Civil Engineering, University of California, Davis.
- Idriss, I. M. (1999). An update to the Seed-Idriss simplified procedure for evaluating liquefaction potential. Proc., TRB Worshop on New Approaches to Liquefaction, Pubbl. n. FHWA-RD-99-165.
- Idriss, I. M., & Boulanger, R. W. (2003a). Estimating Kα for use in evaluating cyclic resistance of sloping ground. 8th US–Japan Workshop on Earthquake Resistant Design of Lifeline Facilities and Countermeasures against Liquefaction, Report MCEER-03-0003, MCEER, 449–468.
- Idriss, I. M., & Boulanger, R. W. (2003b). Estimating Kα for use in evaluating cyclic resistance of sloping ground. 8th US–Japan Workshop on Earthquake Resistant Design of Lifeline Facilities and Countermeasures against Liquefaction, Report MCEER-03-0003, MCEER, 449–468.
- Juang, C. H., Chen, C. J., Rosowsky, D. V., & Tang, W. H. (2000b). CPT-based liquefaction analysis, Part 2: Reliability for design. Geotechnique. https://doi.org/10.1680/geot.2000.50.5.593
- Juang, C. H., Chen, C. J., Tang, W. H., & Rosowsky, D. V. (2000a). CPT-based liquefaction analysis, Part 1: Determination of limit state function. Géotechnique, 50(5), 583–592. https://doi.org/10.1680/geot.2000.50.5.583
- Juang, C. H., Rosowsky, D. V., & Tang, W. H. (1999). Reliability-based method for assessing liquefaction potential of soils. Journal of Geotechnical and Geoenvironmental Engineering. https://doi.org/10.1061/(ASCE)1090-0241(1999)125:8(684)
- Juang, C. Hsein, Caroline J. Chen, Tao Jiang, and Ronald D. Andrus. (2000). “Risk-Based Liquefaction Potential Evaluation Using Standard Penetration Tests.” Canadian Geotechnical Journal 37 (6): 1195–1208. doi:10.1139/cgj-37-6-1195.
- Juang, C. Hsein, Sunny Ye Fang, Wilson H. Tang, Eng Hui Khor, Gordon Tung Chin Kung, and Jie Zhang. (2009). “Evaluating Model Uncertainty of an Spt-Based Simplified Method for Reliability Analysis for Probability of Liquefaction.” Soils and Foundations 49 (1): 135–152. doi:10.3208/sandf.49.135.
- Juang, C., Andrus, R., Jiang, T., & Chen, C. (2001). Probability-based liquefaction evaluation using shear wave velocity measurements. Proc., 4th Int. Conf. Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, 26–31.
- Juang, C., Jiang, T., & Andrus, R. D. (2002). Assessing probability-based methods for liquefaction potential evaluation. Journal of Geotechnical and Geoenvironmental Engineering, 128(7), 580–589. http://ascelibrary.org/doi/abs/10.1061/(ASCE)1090-0241(2002)128:7(580)
- Lasley, S. J., Green, R. A., & Rodriguez-Marek, A. (2016). New stress reduction coefficient relationship for liquefaction triggering analyses. Journal of Geotechnical and Geoenvironmental Engineering, 142(11). http://doi.org/10.1061/(ASCE)GT.1943-5606.0001530
- Liao, Samson S C, and Robert V Whitman. (1986). “Overburden Correction Factors for SPT in Sand.” Journal of Geotechnical Engineering 112 (3): 373–377. doi:10.1061/(ASCE)0733-9410(1986)112:3(373).
- National Center for Research on Earthquake Engineering (NCREE), National Advanced Project in Hazard Mitigation (NAPHM), and Taiwan Geotechnical Society (GST). (2001). Geotechnical Reconnaissance Report Of the 921 Ji-Ji Earthquake, Taiwan, 1999.
- Singh, P., Kumar, D., & Samui, P. (2020). Reliability analysis of rock slope using soft computing techniques. Jordan Journal of Civil Engineering, 14(1), 2020.
- Sebaaly, Graziella T., and Muhsin E. Rahhal. (2019). “Probabilistic Analysis of Soil Liquefaction Based on CPT and SPT Results.” In COMPDYN Proceedings, 1:141–150. doi:10.7712/120119.6908.19549.
- Seed, H B, K Tokimatsu, L F Harder, and R M Chung. (1985). “Influence of SPT Procedures in Soil Liquefaction Resistance Evaluations.” Journal of Geotechnical Engineering 111(12): 1425–45. http://ascelibrary.org/doi/abs/10.1061/(ASCE)0733-9410(1985)111:12(1425).
- Seed, H. B. (1979). Soil liquefaction and cyclic mobility evaluation for level ground during earthquakes. Journal of Geotechnical and Geoenvironmental Engineering, 105(GT2), 201–255. http://worldcat.org/oclc/3519342
- Seed, H. B., & Idriss, I. M. (1971). Simplified procedure for evaluating soil liquefaction potential. Journal of the Soil Mechanics and Foundations Division, 97(9), 1249–1273.
- Seed, H. B., & Idriss, I. M. (1982). Ground motions and soil liquefaction during earthquakes. Earthquake Engineering Research Institute.
- Seed, H. B., Idriss, I. M., & Arango, I. (1983). Evaluation of Liquefaction Potential Using Field Performance Data. Journal of Geotechnical Engineering, 109(3), 458–482. https://doi.org/10.1061/(ASCE)0733-9410(1983)109:3(458)
- Seed, H. Bolton. (1984). The Influence of SPT Procedures in Soil Liquefaction Resistance Evaluations. Report No. UCB/EERC-84/15. Berkeley: University of California, Earthquake Engineering Research Center. http://www.worldcat.org/title/influence-of-spt-procedures-in-soil-liquefaction-resistance-evaluations/oclc/11804853.
- Sun, R., Wang, K., & Yuan, X. (2020). Influencing Factors and New Calculation Formulae for the Stress Reduction Coefficient. Journal of Earthquake Engineering. http://doi.org/10.1080/13632469.2020.1739172
- Youd, B. T. L., Idriss, I. M., Andrus, R. D., Arango, I., Castro, G., Christian, J. T., Dobry, R., Finn, W. D. L., Jr, L. F. H., Hynes, M. E., Ishihara, K., Koester, J. P., Liao, S. S. C., Iii, W. F. M., Martin, G. R., Mitchell, J. K., Moriwaki, Y., Power, M. S., Robertson, P. K., … Ii, K. H. S. (2001). Liquefaction Resistance of Soils : Summary R Eport From the 1996 Nceer and 1998 Nceer / Nsf Workshops on Evaluation. Journal of Geotechnical and Geoenvironmental Engineering, 127(10), 817–833. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:10(817)
- Youd, T. L., & Noble, S. K. (1997). Magnitude scaling factors. NCEER Workshop on Evaluation of Liquefaction Resistance of Soils, 149–166. https://trid.trb.org/view.aspx?id=542970