Have a personal or library account? Click to login
Evaluation of sand p–y curves by predicting both monopile lateral response and OWT natural frequency Cover

Evaluation of sand p–y curves by predicting both monopile lateral response and OWT natural frequency

Open Access
|Feb 2022

Figures & Tables

Figure 1

Original p–y curves. (a) Piecewise p–y curve proposed by Reese et al., (b) Hyperbolic formula suggested by the API.
Original p–y curves. (a) Piecewise p–y curve proposed by Reese et al., (b) Hyperbolic formula suggested by the API.

Figure 2

FE mesh used to analyze soil–monopile interaction.
FE mesh used to analyze soil–monopile interaction.

Figure 3

Monopile at Horns Rev: (a) monopile structural details, (b) soil layers.
Monopile at Horns Rev: (a) monopile structural details, (b) soil layers.

Figure 4

Profiles of lateral displacements.
Profiles of lateral displacements.

Figure 5

Profiles of bending moments.
Profiles of bending moments.

Figure 6

Profiles of shear forces.
Profiles of shear forces.

Figure 7

Profiles of soil reaction.
Profiles of soil reaction.

Figure 8

Histograms for the monopile head stiffness coefficients provided by the different models.
Histograms for the monopile head stiffness coefficients provided by the different models.

Figure 9

(a) (Substructure/tower/monopile) system, (b) Tower modeling with three springs representing the soil–monopile interaction, (c) Details of substructure and tower.
(a) (Substructure/tower/monopile) system, (b) Tower modeling with three springs representing the soil–monopile interaction, (c) Details of substructure and tower.

Figure 10

Monopile head movements in terms of monopile head applied loading: (a) H-uL, (b) M-θR and (c) H-θR curves.
Monopile head movements in terms of monopile head applied loading: (a) H-uL, (b) M-θR and (c) H-θR curves.

Adopted values for computing the 1st NF at North Hoyle_

αmSubstructure mass mS (ton)Substructure bending rigidity EIS (GN m2)Tower top bending rigidity EItop (GN m2)Soil Young’s modulus Es (MPa)λav
0.9051.73934.138254.16233.547110.03.808

Soil strength and deformation parameters at North Hoyle site_

Cohesion c (kN/m2)Angle of friction ϕ (°)Young’s modulus Es (MPa)Poisson’s ratio νsShear modulus Gs (MPa)Reference
0.040.0644.00.40230.0Arany et al. [20]

Soil strata for each soil layer at Horns Rev_

Soil layerTypeDepth (m)Es (MPa)γ(γ′) (kN/m3)ϕ (°)ψ (°)νs
1Sand0.0–4.5130.020(10)45.415.40.28
2Sand4.5–6.5114.320(10)40.710.70.28
3Sand to silty sand6.5–11.9100.020(10)38.08.00.28
4Sand to silty sand11.9–14.0104.520(10)36.66.60.28
5Sand/silt/organic14.0–18.24.517(7)27.00.00.28
6Sand>18.2168.820(10)38.78.70.28

Proposed formulae to enhance p–y curves_

The initial stiffness E*pyParameters involvedNature of sandReference
kAPIzAs in equation (2)SilicaAPI [4], DNV [5]
kWz=zkAPI(DprefDp)4(1-a)4+a {{\boldsymbol{k}}_{\boldsymbol{W}}}{\boldsymbol{z = z}}\,{{\boldsymbol{k}}_{{\bf{API}}}}{\left({{{{\boldsymbol{D}}_{\boldsymbol{p}}^{{\bf{ref}}}} \over {{{\boldsymbol{D}}_{\boldsymbol{p}}}}}} \right)^{{{{\boldsymbol{4(1 - a)}}} \over {{\boldsymbol{4 + a}}}}}} a=0.6 for a medium dense sanda=0.5 for a dense sandDpref=1.0 mSilicaWiemann et al. [12]
kS1z=a(ZZref)b(DpDpref)cϕd {{\boldsymbol{k}}_{{\boldsymbol{S1}}}}\,{\boldsymbol{z = a}}{\left({{{\boldsymbol{Z}} \over {{{\boldsymbol{Z}}_{{\bf{ref}}}}}}} \right)^{\boldsymbol{b}}}{\left({{{{{\boldsymbol{D}}_{\boldsymbol{p}}}} \over {{\boldsymbol{D}}_{\boldsymbol{p}}^{{\bf{ref}}}}}} \right)^{\boldsymbol{c}}}\,{\phi ^{\boldsymbol{d}}} a=50,000, zref=1 m, Dpref=1.0 mb=0.6, c=0.5, d=3.6, ϕ in radiansSilicaSorensen et al. [13]
kKz=kAPIzref(ZZref)m(DpDpref)0.5 {{\boldsymbol{k}}_{\boldsymbol{K}}}\,{\boldsymbol{z =}}{{\boldsymbol{k}}_{{\bf{API}}}}{{\boldsymbol{z}}_{{\bf{ref}}}}{\left({{{\boldsymbol{Z}} \over {{{\boldsymbol{Z}}_{{\bf{ref}}}}}}} \right)^{\boldsymbol{m}}}{\left({{{{{\boldsymbol{D}}_{\boldsymbol{p}}}} \over {{\boldsymbol{D}}_{\boldsymbol{p}}^{{\bf{ref}}}}}} \right)^{{\boldsymbol{0}}{\boldsymbol{.5}}}} m=0.6, zref=2.5 m, Dpref=0.61 mSilicaKallehave et al. [14]
kS2z=a(ZZref)b(DpDpref)c(EsEsref)d {{\boldsymbol{k}}_{{\boldsymbol{S2}}}}\,{\boldsymbol{z = a}}{\left({{{\boldsymbol{Z}} \over {{{\boldsymbol{Z}}_{{\bf{ref}}}}}}} \right)^{\boldsymbol{b}}}{\left({{{{{\boldsymbol{D}}_{\boldsymbol{p}}}} \over {{\boldsymbol{D}}_{\boldsymbol{p}}^{{\bf{ref}}}}}} \right)^{\boldsymbol{c}}}\,{\left({{{{{\boldsymbol{E}}_{\boldsymbol{s}}}} \over {{\boldsymbol{E}}_{\boldsymbol{s}}^{{\bf{ref}}}}}} \right)^{\boldsymbol{d}}} a=1 MPa, zref=1 m, Dpref=1 mEsref=1 MPa, b=0.3, c=0.5, d=0.8SilicaSorensen [15]

North Hoyle OWT’s structural details_

OWT componentSymbol (unit)Value
Tower heightLT (m)67.0
Substructure heightLs (m)7.0
Structure heightL (m)74.0
Tower top diameterDt (m)2.3
Tower bottom diameterDb (m)4.0
Tower wall thicknesstT (mm)35.0
Substructure diameterDs (m)4.0
Substructure wall thicknessts (mm)50
Tower material Young's modulusET (GPa)210.0
Tower massmT (ton)130.0
Top massMtop (ton)100.0
Monopile diameterDp (m)4.0
Monopile wall thicknesstp (mm)50
Monopile material Young's modulusEp (GPa)210.0
Monopile depthLp (m)33.0
Measured frequencyfmeasured (Hz)0.35

Stiffness coefficients, interaction factors, and the different 1st NFs computed for the OWT at North Hoyle_

ParametersABAQUS FE AnalysisWILDPOWER 1.0
Reese et al. (1974)O’Neil and Murchison (1983)Kallehave et al. (2012)Sorensen et al. (2010)Sorensen (2012)Wiemann et al. (2004)
KL (MN/m)771.641293.021471.542307.26744.071335.671101.32
KR (MN m/rad)54,172.9463,519.5066,491.9874,640.8150,676.5763,667.9760,458.79
KLR (MN)5065.437109.847770.2710,061.804689.597141.616412.90
CR0.86930.88590.89000.90720.87030.89010.8802
CL0.99770.99860.99880.99930.99780.99870.9984
Fixed base NF fFB (Hz)0.417
1st NF f1 (Hz)0.3610.3690.3710.3780.3620.3710.367
Measured NF f measured (Hz)0.35
Deviation(%)=|fmeasuredf1fmeasured|100 {\rm{Deviation}}\,(\%) = \left| {{{{f_{{\rm{measured}}}} - {f_1}} \over {{f_{{\rm{measured}}}}}}} \right|\,100 100 3.145.436.008.003.436.004.86

Monopile head flexibility coefficients_

Flexibility coefficientsABAQUS FE analysisWILDPOWER 1.0
Reese et al. (1974)O’Neill and Murchison (1983)Kallehave et al. (2012)Sorensen et al. (2010)Sorensen (2012)Wiemann et al. (2004)
IL (m/MN)0.0033560.0020110.0017750.0010520.0032250.0018710.002375
IR (rad/MN m)0.0000480.0000410.0000390.0000330.0000470.0000390.000043
ILR (1/MN)0.0003140.0002250.0002070.0001420.0002980.0002100.000252
DOI: https://doi.org/10.2478/sgem-2022-0003 | Journal eISSN: 2083-831X | Journal ISSN: 0137-6365
Language: English
Page range: 66 - 81
Submitted on: May 20, 2021
Accepted on: Nov 27, 2021
Published on: Feb 10, 2022
Published by: Sciendo
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2022 Douifi Amel, Amar Bouzid Djillali, Bhattacharya Subhamoy, Amoura Nasreddine, published by Sciendo
This work is licensed under the Creative Commons Attribution 4.0 License.