Have a personal or library account? Click to login

Optimisation of absorber parameters in the case of stochastic vibrations in a bridge with a deck platform for servicing pipelines

Open Access
|Dec 2021

References

  1. Dallard P., Fitzpatrick T., Flint A., Low A., Smith R.R., Willford M., Roche M., 2001. London Millennium Bridge: Pedestrian-Induced Lateral Vibration, Journal of Bridge Engineering 6(6), 412 – 417.
  2. Yau J.D., Yang Y.B., 2004. Vibration reduction for cable-stayed bridges traveled by high-speed trains, Finite Elements in Analysis and Design 40, 341 – 359.
  3. Majcher K., Wójcicki Z., 2014. Kinematically excited parametric vibration of a tall building model with a TMD. Pt. 1, Numerical analyses. Archives of Civil and Mechanical Engineering 14(1), 204–217.
  4. Herbut A., Rybak J., Brząkała W., 2020. On a Sensor Placement Methodology for Monitoring the Vibrations of Horizontally Excited Ground Sensors 20(7), 1938; https://doi.org/10.3390/s20071938.
  5. Den Hartog J.P., 1985. Mechanical Vibrations, 4th ed., Dover, New York.
  6. Korenev B. G., Reznikov L.M., 1993. Dynamic vibration absorbers, John Wiley.
  7. Soong T.T., Dargush G.F., 1997. Passive Energy dissipation systems in structural Engineering, Wiley, New York.
  8. Jacquot R. Q., Hoppe D. H., 1973. Optimum random vibration absorbers, Journal of the Engineering Mechanics Division, ASCE 99, 612–616.
  9. Cheung Y.L., Wong W.O., 2013. Optimization of a hybrid vibration absorber for vibration control of structures under force excitation, Journal of Sound and Vibration, 332, 494–509.
  10. Sinha A., 2009, Optimal damped vibration absorber for narrow band random excitations a mixed H2/H∞ optimization, Probabilistic Engineering Mechanics 24, 251–254.
  11. Tigli O.F., 2012. Optimum vibration absorber (tuned mass damper) design for linear damped systems subjected to random loads, Journal of Sound and Vibration 331, 3035–3049.
  12. Sieniawska R., Sniady P., Zukowski S., 1996. Optimization of stochastic vibrations absorbers with respect to structure's reliability, Structural Dynamics-EURODYN, Florence, 583–589.
  13. Hua Y., Wong W., Cheng L., 2018. Optimal design of a beam-based dynamic vibration absorber using fixed-points theory, Journal of Sound and Vibration 421, 111–131.
  14. Basili M., De Angelis M., Pietrosanti D., 2019. Defective two adjacent single degree of freedom systems linked by spring-dashpot-inerter for vibration control, Engineering Structures 188, 480–492.
  15. Zuo L., Nayfeh S. A., 2006. The two-degree-of-freedom tuned-mass damper for suppression of single-mode vibration under random and harmonic excitation, Journal of Vibration and Acoustics, Transections of the ASME, 128(2), 56–65.
  16. Barredo E., Larios J.G.M., Mayen J., Flores-Hernandez A.A., Colin J., 2019. Optimal design for high-performance passive dynamic vibration absorbers under random vibration, Engineering Structures, 195, 469–489.
  17. Laurentiu M., Agathoklis G., 2014. Optimal design of novel tuned mass-damper-inerter (TMDI) passive vibration control configuration for stochastically support-excited structural systems, Probabilistic Engineering mechanics, 38, 156–164.
  18. Jacquot R.G., 2001. Suppresion of random vibration in plates using vibration absorbers, Journal of Sound and Vibration, 248 (4), 585–596.
  19. Shum K.M., 2015. Tuned vibration absorbers with nonlinear viscous damping for damped structures under random load, Journal of Sound and Vibrations, 346, 70–80.
  20. Javidialesaadi A., Wierschem N.E., 2018. Optimal design of rotational inertial double tuned mass dampers under random excitation, Engineering Structures, 165, 412–421.
  21. Yang F., Sedaghati R., Esmailzadeh E., 2021. Vibration suppression of Structures using tuned mass damper technology: A state-of-the-art review, Journal of Vibration and Control, https://doi.org/10.1177/1077546320984305.
  22. Frahm H., 1911. Device for damping vibrations of bodies, United States Patent, 3576–3580.
  23. Ormondroyd J., Den Hartog J.P., 1928. The theory of the dynamic vibration absorber, Transactions of ASME, Journal of Applied Mechanics 50 (7), 9–22.
  24. Anh N. D., Nguyen N. X., Hoa L. T., 2013. Design of three-element dynamic vibration absorber for damped linear structures, Journal of Sound and Vibration 332, 4482–4495.
  25. Asami T., Nishihara O., Baz A.M., 2002. Analytical solutions to H∞ and H2 optimization of dynamic vibration absorbers attached to damped linear systems, Transactions of ASME Journal of Vibration and Acoustics;124(2), 284–295.
  26. Nishihara O., Asami T., 2002. Closed-form solutions to the exact optimizations of dynamic vibration absorbers (minimizations of the maximum amplitude magnification factors), Transactions of ASME Journal of Vibration and Acoustics 124(4), 576–582.
  27. Sims N. D., 2007. Vibration absorbers for chatter suppression: a new analytical tuning methodology, Journal of Sound and Vibration 301 (3), 592–607.
  28. Shen Y., Peng H., Li X., Yang S., 2017. Analytically optimal parameters of dynamic vibration absorber with negative stiffness, Mechanical Systems and Signal Processing 85, 193–203.
  29. Issa J. S., 2013. Vibration absorbers for simply supported beams subjected to constant moving loads. Proceedings of the Institution of Mechanical Engineers Part K Journal of Multi-body Dynamics 226(4):398–404.
  30. Samani F. S., Pellicano F., Masoumi A., 2013. Performances of dynamic vibration absorbers for beams subjected to moving loads. Nonlinear Dynamics 72(1–2).
  31. Crandall S.H. and Mark W.D., 1963. Random Vibration in Mechanical Systems. New York: Academic Press.
  32. Soong T.T., Grigoriu M., 1993. Random vibration of mechanical and structural systems, PTR Prentice-Hall, Inc.
  33. Lin Y.K., Cai G.Q., 1995. Probabilistic structural dynamics: Advanced theory and applications, McGraw-Hill.
  34. Solnes J., 1997. Stochastic processes and random vibrations, John Wiley & Sons.
  35. Rystwej A., Śniady P., 2007. Dynamic response of an infinite beam and plate to a stochastic train of moving forces, Journal of Sound and Vibration, 299, 1033–1048.
  36. Śniady P., 1989. Dynamic response of linear structures to a random stream of pulses, Journal of Sound and Vibration, 131, 1, 91–102.
  37. Śniady P., 2000. Fundamentals of stochastic structure dynamics (in Polish), Oficyna Wydawnicza Politechniki Wrocławskiej.
  38. Wolfram Mathematica 12. Wolfram Research ©Copyright 1988–2021.
  39. Podwórna M., Grosel J., Śniady P., 2021. Absorbers impact on the reliability of structures subjected to random vibrations, IOP Conference Series: Materials Science and Engineering 1015.
  40. Warburton G.B., 1982. Optimum absorber parameters for various combinations of response and excitation parameters. Earthquake Engineering and Structural Dynamics 10, 381–401.
DOI: https://doi.org/10.2478/sgem-2021-0030 | Journal eISSN: 2083-831X | Journal ISSN: 0137-6365
Language: English
Page range: 492 - 500
Submitted on: Aug 17, 2021
Accepted on: Oct 26, 2021
Published on: Dec 5, 2021
Published by: Wroclaw University of Science and Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2021 Jacek Grosel, Monika Podwórna, published by Wroclaw University of Science and Technology
This work is licensed under the Creative Commons Attribution 4.0 License.